Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent

Identifieur interne : 001043 ( Main/Exploration ); précédent : 001042; suivant : 001044

Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent

Auteurs : Daniel Coman [États-Unis] ; Hubert K. Trubel [États-Unis, Allemagne] ; Robert E. Rycyna [États-Unis] ; Fahmeed Hyder [États-Unis]

Source :

RBID : ISTEX:2ACF5C37153A539FFA9164F726C043FFDD9D58FE

Descripteurs français

English descriptors

Abstract

Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly because of lack of precise and non‐invasive methods. At 11.7 T, we demonstrate that a thulium‐based macrocyclic complex infused through the bloodstream can be used to obtain temperature and pH maps of rat brain in vivo by 1H chemical shift imaging (CSI) of the sensor itself in conjunction with a multi‐parametric model that depends on several proton resonances of the sensor. Accuracies of temperature and pH determination with the thulium sensor – which has a predominantly extracellular presence – depend on stable signals during the course of the CSI experiment as well as redundancy for temperature and pH sensitivities contained within the observed signals. The thulium‐based method compared well with other methods for temperature (1H MRS of N‐acetylaspartate and water; copper–constantan thermocouple wire) and pH (31P MRS of inorganic phosphate and phosphocreatine) assessment, as established by in vitro and in vivo studies. In vitro studies in phantoms with two compartments of different pH value observed under different ambient temperature conditions generated precise temperature and pH distribution maps. In vivo studies in α‐chloralose‐anesthetized and renal‐ligated rats revealed temperature (33–34°C) and pH (7.3–7.4) distributions in the cerebral cortex that are in agreement with observations by other methods. These results show that the thulium sensor can be used to measure temperature and pH distributions in rat brain in vivo simultaneously and accurately with using biosensor imaging of redundant. Copyright © 2008 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/nbm.1312


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
</author>
<author>
<name sortKey="Trubel, Hubert K" sort="Trubel, Hubert K" uniqKey="Trubel H" first="Hubert K." last="Trubel">Hubert K. Trubel</name>
</author>
<author>
<name sortKey="Rycyna, Robert E" sort="Rycyna, Robert E" uniqKey="Rycyna R" first="Robert E." last="Rycyna">Robert E. Rycyna</name>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2ACF5C37153A539FFA9164F726C043FFDD9D58FE</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1002/nbm.1312</idno>
<idno type="url">https://api.istex.fr/document/2ACF5C37153A539FFA9164F726C043FFDD9D58FE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000940</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000940</idno>
<idno type="wicri:Area/Istex/Curation">000940</idno>
<idno type="wicri:Area/Istex/Checkpoint">000438</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000438</idno>
<idno type="wicri:doubleKey">0952-3480:2009:Coman D:brain:temperature:and</idno>
<idno type="wicri:source">PMC</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735415</idno>
<idno type="RBID">PMC:2735415</idno>
<idno type="wicri:Area/Pmc/Corpus">000110</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000110</idno>
<idno type="wicri:Area/Pmc/Curation">000110</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000110</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000325</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000325</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="wicri:Area/PubMed/Corpus">000554</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000554</idno>
<idno type="wicri:Area/PubMed/Curation">000554</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000554</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000554</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000554</idno>
<idno type="wicri:Area/Ncbi/Merge">000273</idno>
<idno type="wicri:Area/Ncbi/Curation">000273</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000273</idno>
<idno type="wicri:doubleKey">0952-3480:2009:Coman D:brain:temperature:and</idno>
<idno type="wicri:Area/Main/Merge">001061</idno>
<idno type="wicri:Area/Main/Curation">001043</idno>
<idno type="wicri:Area/Main/Exploration">001043</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Brain temperature and pH measured by
<hi rend="superscript">1</hi>
H chemical shift imaging of a thulium agent</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Correspondence address: N143 TAC, 300 Cedar Street, Magnetic Resonance Research Center, Yale University, New Haven CT 06510</wicri:regionArea>
<wicri:noRegion>New Haven CT 06510</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Trubel, Hubert K" sort="Trubel, Hubert K" uniqKey="Trubel H" first="Hubert K." last="Trubel">Hubert K. Trubel</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>University of Witten/Herdecke</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Rycyna, Robert E" sort="Rycyna, Robert E" uniqKey="Rycyna R" first="Robert E." last="Rycyna">Robert E. Rycyna</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bruker BioSpin MRI, Billerica, MA</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Correspondence address: N143 TAC, 300 Cedar Street, Magnetic Resonance Research Center, Yale University, New Haven CT 06510</wicri:regionArea>
<wicri:noRegion>New Haven CT 06510</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">NMR in Biomedicine</title>
<title level="j" type="alt">NMR IN BIOMEDICINE</title>
<idno type="ISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<imprint>
<biblScope unit="vol">22</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="229">229</biblScope>
<biblScope unit="page" to="239">239</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2009-02">2009-02</date>
</imprint>
<idno type="ISSN">0952-3480</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0952-3480</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acquisition time</term>
<term>Algorithms</term>
<term>Animals</term>
<term>Appl physiol</term>
<term>Biomed</term>
<term>Biosensor imaging</term>
<term>Birds method</term>
<term>Blood volume</term>
<term>Body Temperature (physiology)</term>
<term>Body temperature</term>
<term>Brain (physiology)</term>
<term>Brain temperature</term>
<term>Bruker</term>
<term>Bruker horizontalbore spectrometer</term>
<term>Bruker spectrometer</term>
<term>Chemical exchange saturation transfer</term>
<term>Chemical shift</term>
<term>Chemical shift determination</term>
<term>Chemical shift imaging</term>
<term>Chemical shift measurement</term>
<term>Chemical shifts</term>
<term>Circumventricular organs</term>
<term>Coman</term>
<term>Copyright</term>
<term>Different ambient temperature conditions</term>
<term>Different conditions</term>
<term>Dummy scans</term>
<term>Error analysis</term>
<term>Excellent agreement</term>
<term>Exogenous</term>
<term>Exogenous agent</term>
<term>Extracellular</term>
<term>Extracellular space</term>
<term>Fenestrated vessels</term>
<term>Good agreement</term>
<term>Hyder</term>
<term>Hydrogen-Ion Concentration</term>
<term>Imaging</term>
<term>Infusion</term>
<term>Inner compartments</term>
<term>Inorganic phosphate</term>
<term>Intracellular</term>
<term>Intracellular proteins</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Local region</term>
<term>Magn</term>
<term>Magn reson</term>
<term>Magn reson imaging</term>
<term>Magnetic Resonance Spectroscopy (methods)</term>
<term>Magnetic resonance spectroscopy</term>
<term>National institutes</term>
<term>Noise amplitude</term>
<term>Other methods</term>
<term>Other resonances</term>
<term>Oxford optronix</term>
<term>Paracest agents</term>
<term>Paramagnetic lanthanide complexes</term>
<term>Phantom</term>
<term>Phantom experiments</term>
<term>Physiol</term>
<term>Physiological parameters</term>
<term>Previous results</term>
<term>Proton</term>
<term>Proton chemical shifts</term>
<term>Proton resonances</term>
<term>Protons</term>
<term>Random noise</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Recent study</term>
<term>Redundant deviation</term>
<term>Relaxation times</term>
<term>Renal ligation</term>
<term>Reproducibility of Results</term>
<term>Reson</term>
<term>Results show</term>
<term>Sagittal sinus</term>
<term>Sensitivity and Specificity</term>
<term>Shift reagent</term>
<term>Similar conditions</term>
<term>Simultaneous temperature</term>
<term>Smallest error</term>
<term>Spectral overlap</term>
<term>Standard deviation</term>
<term>Standard deviations</term>
<term>Surface coil</term>
<term>Temperature dependence</term>
<term>Temperature determination</term>
<term>Temperature dynamics</term>
<term>Temperature mapping</term>
<term>Temperature measurements</term>
<term>Temperature sensitivity</term>
<term>Temperature values</term>
<term>Thermocouple wire</term>
<term>Thermocouple wires</term>
<term>Thermography (methods)</term>
<term>Thulium</term>
<term>Thulium (analysis)</term>
<term>Thulium sensor</term>
<term>Tmdotp5</term>
<term>Total acquisition time</term>
<term>Trubel</term>
<term>Vital parameters</term>
<term>Vivo</term>
<term>Vivo conditions</term>
<term>Vivo ratio</term>
<term>Vivo results</term>
<term>Vivo studies</term>
<term>Vivo temperature</term>
<term>Vivo tmdotp5</term>
<term>Voxel</term>
<term>Voxel size</term>
<term>Water proton resonance frequency</term>
<term>Water protons</term>
<term>Water resonance</term>
<term>Water signal</term>
<term>Water suppression</term>
<term>Yale university</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes</term>
<term>Animaux</term>
<term>Concentration en ions d'hydrogène</term>
<term>Encéphale (physiologie)</term>
<term>Protons</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Reproductibilité des résultats</term>
<term>Sensibilité et spécificité</term>
<term>Spectroscopie par résonance magnétique ()</term>
<term>Température du corps (physiologie)</term>
<term>Thermographie ()</term>
<term>Thulium (analyse)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Thulium</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Thulium</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Magnetic Resonance Spectroscopy</term>
<term>Thermography</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Encéphale</term>
<term>Température du corps</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Body Temperature</term>
<term>Brain</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acquisition time</term>
<term>Algorithms</term>
<term>Animals</term>
<term>Appl physiol</term>
<term>Biomed</term>
<term>Biosensor imaging</term>
<term>Birds method</term>
<term>Blood volume</term>
<term>Body temperature</term>
<term>Brain temperature</term>
<term>Bruker</term>
<term>Bruker horizontalbore spectrometer</term>
<term>Bruker spectrometer</term>
<term>Chemical exchange saturation transfer</term>
<term>Chemical shift</term>
<term>Chemical shift determination</term>
<term>Chemical shift imaging</term>
<term>Chemical shift measurement</term>
<term>Chemical shifts</term>
<term>Circumventricular organs</term>
<term>Coman</term>
<term>Copyright</term>
<term>Different ambient temperature conditions</term>
<term>Different conditions</term>
<term>Dummy scans</term>
<term>Error analysis</term>
<term>Excellent agreement</term>
<term>Exogenous</term>
<term>Exogenous agent</term>
<term>Extracellular</term>
<term>Extracellular space</term>
<term>Fenestrated vessels</term>
<term>Good agreement</term>
<term>Hyder</term>
<term>Hydrogen-Ion Concentration</term>
<term>Imaging</term>
<term>Infusion</term>
<term>Inner compartments</term>
<term>Inorganic phosphate</term>
<term>Intracellular</term>
<term>Intracellular proteins</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Local region</term>
<term>Magn</term>
<term>Magn reson</term>
<term>Magn reson imaging</term>
<term>Magnetic resonance spectroscopy</term>
<term>National institutes</term>
<term>Noise amplitude</term>
<term>Other methods</term>
<term>Other resonances</term>
<term>Oxford optronix</term>
<term>Paracest agents</term>
<term>Paramagnetic lanthanide complexes</term>
<term>Phantom</term>
<term>Phantom experiments</term>
<term>Physiol</term>
<term>Physiological parameters</term>
<term>Previous results</term>
<term>Proton</term>
<term>Proton chemical shifts</term>
<term>Proton resonances</term>
<term>Protons</term>
<term>Random noise</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Recent study</term>
<term>Redundant deviation</term>
<term>Relaxation times</term>
<term>Renal ligation</term>
<term>Reproducibility of Results</term>
<term>Reson</term>
<term>Results show</term>
<term>Sagittal sinus</term>
<term>Sensitivity and Specificity</term>
<term>Shift reagent</term>
<term>Similar conditions</term>
<term>Simultaneous temperature</term>
<term>Smallest error</term>
<term>Spectral overlap</term>
<term>Standard deviation</term>
<term>Standard deviations</term>
<term>Surface coil</term>
<term>Temperature dependence</term>
<term>Temperature determination</term>
<term>Temperature dynamics</term>
<term>Temperature mapping</term>
<term>Temperature measurements</term>
<term>Temperature sensitivity</term>
<term>Temperature values</term>
<term>Thermocouple wire</term>
<term>Thermocouple wires</term>
<term>Thulium</term>
<term>Thulium sensor</term>
<term>Tmdotp5</term>
<term>Total acquisition time</term>
<term>Trubel</term>
<term>Vital parameters</term>
<term>Vivo</term>
<term>Vivo conditions</term>
<term>Vivo ratio</term>
<term>Vivo results</term>
<term>Vivo studies</term>
<term>Vivo temperature</term>
<term>Vivo tmdotp5</term>
<term>Voxel</term>
<term>Voxel size</term>
<term>Water proton resonance frequency</term>
<term>Water protons</term>
<term>Water resonance</term>
<term>Water signal</term>
<term>Water suppression</term>
<term>Yale university</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Algorithmes</term>
<term>Animaux</term>
<term>Concentration en ions d'hydrogène</term>
<term>Droit d'auteur</term>
<term>Protons</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Reproductibilité des résultats</term>
<term>Sensibilité et spécificité</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Thermographie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly because of lack of precise and non‐invasive methods. At 11.7 T, we demonstrate that a thulium‐based macrocyclic complex infused through the bloodstream can be used to obtain temperature and pH maps of rat brain in vivo by 1H chemical shift imaging (CSI) of the sensor itself in conjunction with a multi‐parametric model that depends on several proton resonances of the sensor. Accuracies of temperature and pH determination with the thulium sensor – which has a predominantly extracellular presence – depend on stable signals during the course of the CSI experiment as well as redundancy for temperature and pH sensitivities contained within the observed signals. The thulium‐based method compared well with other methods for temperature (1H MRS of N‐acetylaspartate and water; copper–constantan thermocouple wire) and pH (31P MRS of inorganic phosphate and phosphocreatine) assessment, as established by in vitro and in vivo studies. In vitro studies in phantoms with two compartments of different pH value observed under different ambient temperature conditions generated precise temperature and pH distribution maps. In vivo studies in α‐chloralose‐anesthetized and renal‐ligated rats revealed temperature (33–34°C) and pH (7.3–7.4) distributions in the cerebral cortex that are in agreement with observations by other methods. These results show that the thulium sensor can be used to measure temperature and pH distributions in rat brain in vivo simultaneously and accurately with using biosensor imaging of redundant. Copyright © 2008 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>États-Unis</li>
</country>
<region>
<li>Connecticut</li>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Connecticut">
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
</region>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<name sortKey="Rycyna, Robert E" sort="Rycyna, Robert E" uniqKey="Rycyna R" first="Robert E." last="Rycyna">Robert E. Rycyna</name>
<name sortKey="Trubel, Hubert K" sort="Trubel, Hubert K" uniqKey="Trubel H" first="Hubert K." last="Trubel">Hubert K. Trubel</name>
<name sortKey="Trubel, Hubert K" sort="Trubel, Hubert K" uniqKey="Trubel H" first="Hubert K." last="Trubel">Hubert K. Trubel</name>
</country>
<country name="Allemagne">
<noRegion>
<name sortKey="Trubel, Hubert K" sort="Trubel, Hubert K" uniqKey="Trubel H" first="Hubert K." last="Trubel">Hubert K. Trubel</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001043 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001043 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:2ACF5C37153A539FFA9164F726C043FFDD9D58FE
   |texte=   Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024