Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent

Identifieur interne : 000940 ( Istex/Corpus ); précédent : 000939; suivant : 000941

Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent

Auteurs : Daniel Coman ; Hubert K. Trubel ; Robert E. Rycyna ; Fahmeed Hyder

Source :

RBID : ISTEX:2ACF5C37153A539FFA9164F726C043FFDD9D58FE

English descriptors

Abstract

Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly because of lack of precise and non‐invasive methods. At 11.7 T, we demonstrate that a thulium‐based macrocyclic complex infused through the bloodstream can be used to obtain temperature and pH maps of rat brain in vivo by 1H chemical shift imaging (CSI) of the sensor itself in conjunction with a multi‐parametric model that depends on several proton resonances of the sensor. Accuracies of temperature and pH determination with the thulium sensor – which has a predominantly extracellular presence – depend on stable signals during the course of the CSI experiment as well as redundancy for temperature and pH sensitivities contained within the observed signals. The thulium‐based method compared well with other methods for temperature (1H MRS of N‐acetylaspartate and water; copper–constantan thermocouple wire) and pH (31P MRS of inorganic phosphate and phosphocreatine) assessment, as established by in vitro and in vivo studies. In vitro studies in phantoms with two compartments of different pH value observed under different ambient temperature conditions generated precise temperature and pH distribution maps. In vivo studies in α‐chloralose‐anesthetized and renal‐ligated rats revealed temperature (33–34°C) and pH (7.3–7.4) distributions in the cerebral cortex that are in agreement with observations by other methods. These results show that the thulium sensor can be used to measure temperature and pH distributions in rat brain in vivo simultaneously and accurately with using biosensor imaging of redundant. Copyright © 2008 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/nbm.1312

Links to Exploration step

ISTEX:2ACF5C37153A539FFA9164F726C043FFDD9D58FE

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: daniel.coman@yale.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: N143 TAC, 300 Cedar Street, Magnetic Resonance Research Center, Yale University, New Haven CT 06510, USA.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Trubel, Hubert K" sort="Trubel, Hubert K" uniqKey="Trubel H" first="Hubert K." last="Trubel">Hubert K. Trubel</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>University of Witten/Herdecke, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rycyna, Robert E" sort="Rycyna, Robert E" uniqKey="Rycyna R" first="Robert E." last="Rycyna">Robert E. Rycyna</name>
<affiliation>
<mods:affiliation>Bruker BioSpin MRI, Billerica, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Biomedical Engineering, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: fahmeed.hyder@yale.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: N143 TAC, 300 Cedar Street, Magnetic Resonance Research Center, Yale University, New Haven CT 06510, USA.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2ACF5C37153A539FFA9164F726C043FFDD9D58FE</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1002/nbm.1312</idno>
<idno type="url">https://api.istex.fr/document/2ACF5C37153A539FFA9164F726C043FFDD9D58FE/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000940</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000940</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Brain temperature and pH measured by
<hi rend="superscript">1</hi>
H chemical shift imaging of a thulium agent</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: daniel.coman@yale.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: N143 TAC, 300 Cedar Street, Magnetic Resonance Research Center, Yale University, New Haven CT 06510, USA.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Trubel, Hubert K" sort="Trubel, Hubert K" uniqKey="Trubel H" first="Hubert K." last="Trubel">Hubert K. Trubel</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>University of Witten/Herdecke, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rycyna, Robert E" sort="Rycyna, Robert E" uniqKey="Rycyna R" first="Robert E." last="Rycyna">Robert E. Rycyna</name>
<affiliation>
<mods:affiliation>Bruker BioSpin MRI, Billerica, MA, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Biomedical Engineering, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: fahmeed.hyder@yale.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: N143 TAC, 300 Cedar Street, Magnetic Resonance Research Center, Yale University, New Haven CT 06510, USA.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">NMR in Biomedicine</title>
<title level="j" type="alt">NMR IN BIOMEDICINE</title>
<idno type="ISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<imprint>
<biblScope unit="vol">22</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="229">229</biblScope>
<biblScope unit="page" to="239">239</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2009-02">2009-02</date>
</imprint>
<idno type="ISSN">0952-3480</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0952-3480</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acquisition time</term>
<term>Appl physiol</term>
<term>Biomed</term>
<term>Biosensor imaging</term>
<term>Birds method</term>
<term>Blood volume</term>
<term>Body temperature</term>
<term>Brain temperature</term>
<term>Bruker</term>
<term>Bruker horizontalbore spectrometer</term>
<term>Bruker spectrometer</term>
<term>Chemical exchange saturation transfer</term>
<term>Chemical shift</term>
<term>Chemical shift determination</term>
<term>Chemical shift imaging</term>
<term>Chemical shift measurement</term>
<term>Chemical shifts</term>
<term>Circumventricular organs</term>
<term>Coman</term>
<term>Copyright</term>
<term>Different ambient temperature conditions</term>
<term>Different conditions</term>
<term>Dummy scans</term>
<term>Error analysis</term>
<term>Excellent agreement</term>
<term>Exogenous</term>
<term>Exogenous agent</term>
<term>Extracellular</term>
<term>Extracellular space</term>
<term>Fenestrated vessels</term>
<term>Good agreement</term>
<term>Hyder</term>
<term>Imaging</term>
<term>Infusion</term>
<term>Inner compartments</term>
<term>Inorganic phosphate</term>
<term>Intracellular</term>
<term>Intracellular proteins</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Local region</term>
<term>Magn</term>
<term>Magn reson</term>
<term>Magn reson imaging</term>
<term>Magnetic resonance spectroscopy</term>
<term>National institutes</term>
<term>Noise amplitude</term>
<term>Other methods</term>
<term>Other resonances</term>
<term>Oxford optronix</term>
<term>Paracest agents</term>
<term>Paramagnetic lanthanide complexes</term>
<term>Phantom</term>
<term>Phantom experiments</term>
<term>Physiol</term>
<term>Physiological parameters</term>
<term>Previous results</term>
<term>Proton</term>
<term>Proton chemical shifts</term>
<term>Proton resonances</term>
<term>Random noise</term>
<term>Recent study</term>
<term>Redundant deviation</term>
<term>Relaxation times</term>
<term>Renal ligation</term>
<term>Reson</term>
<term>Results show</term>
<term>Sagittal sinus</term>
<term>Shift reagent</term>
<term>Similar conditions</term>
<term>Simultaneous temperature</term>
<term>Smallest error</term>
<term>Spectral overlap</term>
<term>Standard deviation</term>
<term>Standard deviations</term>
<term>Surface coil</term>
<term>Temperature dependence</term>
<term>Temperature determination</term>
<term>Temperature dynamics</term>
<term>Temperature mapping</term>
<term>Temperature measurements</term>
<term>Temperature sensitivity</term>
<term>Temperature values</term>
<term>Thermocouple wire</term>
<term>Thermocouple wires</term>
<term>Thulium</term>
<term>Thulium sensor</term>
<term>Tmdotp5</term>
<term>Total acquisition time</term>
<term>Trubel</term>
<term>Vital parameters</term>
<term>Vivo</term>
<term>Vivo conditions</term>
<term>Vivo ratio</term>
<term>Vivo results</term>
<term>Vivo studies</term>
<term>Vivo temperature</term>
<term>Vivo tmdotp5</term>
<term>Voxel</term>
<term>Voxel size</term>
<term>Water proton resonance frequency</term>
<term>Water protons</term>
<term>Water resonance</term>
<term>Water signal</term>
<term>Water suppression</term>
<term>Yale university</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acquisition time</term>
<term>Appl physiol</term>
<term>Biomed</term>
<term>Biosensor imaging</term>
<term>Birds method</term>
<term>Blood volume</term>
<term>Body temperature</term>
<term>Brain temperature</term>
<term>Bruker</term>
<term>Bruker horizontalbore spectrometer</term>
<term>Bruker spectrometer</term>
<term>Chemical exchange saturation transfer</term>
<term>Chemical shift</term>
<term>Chemical shift determination</term>
<term>Chemical shift imaging</term>
<term>Chemical shift measurement</term>
<term>Chemical shifts</term>
<term>Circumventricular organs</term>
<term>Coman</term>
<term>Copyright</term>
<term>Different ambient temperature conditions</term>
<term>Different conditions</term>
<term>Dummy scans</term>
<term>Error analysis</term>
<term>Excellent agreement</term>
<term>Exogenous</term>
<term>Exogenous agent</term>
<term>Extracellular</term>
<term>Extracellular space</term>
<term>Fenestrated vessels</term>
<term>Good agreement</term>
<term>Hyder</term>
<term>Imaging</term>
<term>Infusion</term>
<term>Inner compartments</term>
<term>Inorganic phosphate</term>
<term>Intracellular</term>
<term>Intracellular proteins</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Local region</term>
<term>Magn</term>
<term>Magn reson</term>
<term>Magn reson imaging</term>
<term>Magnetic resonance spectroscopy</term>
<term>National institutes</term>
<term>Noise amplitude</term>
<term>Other methods</term>
<term>Other resonances</term>
<term>Oxford optronix</term>
<term>Paracest agents</term>
<term>Paramagnetic lanthanide complexes</term>
<term>Phantom</term>
<term>Phantom experiments</term>
<term>Physiol</term>
<term>Physiological parameters</term>
<term>Previous results</term>
<term>Proton</term>
<term>Proton chemical shifts</term>
<term>Proton resonances</term>
<term>Random noise</term>
<term>Recent study</term>
<term>Redundant deviation</term>
<term>Relaxation times</term>
<term>Renal ligation</term>
<term>Reson</term>
<term>Results show</term>
<term>Sagittal sinus</term>
<term>Shift reagent</term>
<term>Similar conditions</term>
<term>Simultaneous temperature</term>
<term>Smallest error</term>
<term>Spectral overlap</term>
<term>Standard deviation</term>
<term>Standard deviations</term>
<term>Surface coil</term>
<term>Temperature dependence</term>
<term>Temperature determination</term>
<term>Temperature dynamics</term>
<term>Temperature mapping</term>
<term>Temperature measurements</term>
<term>Temperature sensitivity</term>
<term>Temperature values</term>
<term>Thermocouple wire</term>
<term>Thermocouple wires</term>
<term>Thulium</term>
<term>Thulium sensor</term>
<term>Tmdotp5</term>
<term>Total acquisition time</term>
<term>Trubel</term>
<term>Vital parameters</term>
<term>Vivo</term>
<term>Vivo conditions</term>
<term>Vivo ratio</term>
<term>Vivo results</term>
<term>Vivo studies</term>
<term>Vivo temperature</term>
<term>Vivo tmdotp5</term>
<term>Voxel</term>
<term>Voxel size</term>
<term>Water proton resonance frequency</term>
<term>Water protons</term>
<term>Water resonance</term>
<term>Water signal</term>
<term>Water suppression</term>
<term>Yale university</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly because of lack of precise and non‐invasive methods. At 11.7 T, we demonstrate that a thulium‐based macrocyclic complex infused through the bloodstream can be used to obtain temperature and pH maps of rat brain in vivo by 1H chemical shift imaging (CSI) of the sensor itself in conjunction with a multi‐parametric model that depends on several proton resonances of the sensor. Accuracies of temperature and pH determination with the thulium sensor – which has a predominantly extracellular presence – depend on stable signals during the course of the CSI experiment as well as redundancy for temperature and pH sensitivities contained within the observed signals. The thulium‐based method compared well with other methods for temperature (1H MRS of N‐acetylaspartate and water; copper–constantan thermocouple wire) and pH (31P MRS of inorganic phosphate and phosphocreatine) assessment, as established by in vitro and in vivo studies. In vitro studies in phantoms with two compartments of different pH value observed under different ambient temperature conditions generated precise temperature and pH distribution maps. In vivo studies in α‐chloralose‐anesthetized and renal‐ligated rats revealed temperature (33–34°C) and pH (7.3–7.4) distributions in the cerebral cortex that are in agreement with observations by other methods. These results show that the thulium sensor can be used to measure temperature and pH distributions in rat brain in vivo simultaneously and accurately with using biosensor imaging of redundant. Copyright © 2008 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>tmdotp5</json:string>
<json:string>extracellular</json:string>
<json:string>chemical shifts</json:string>
<json:string>voxel</json:string>
<json:string>biomed</json:string>
<json:string>john wiley sons</json:string>
<json:string>brain temperature</json:string>
<json:string>copyright</json:string>
<json:string>proton</json:string>
<json:string>extracellular space</json:string>
<json:string>reson</json:string>
<json:string>coman</json:string>
<json:string>magn</json:string>
<json:string>magn reson</json:string>
<json:string>thulium</json:string>
<json:string>physiol</json:string>
<json:string>hyder</json:string>
<json:string>standard deviations</json:string>
<json:string>trubel</json:string>
<json:string>lanthanide</json:string>
<json:string>intracellular</json:string>
<json:string>relaxation times</json:string>
<json:string>other methods</json:string>
<json:string>exogenous</json:string>
<json:string>bruker</json:string>
<json:string>chemical shift</json:string>
<json:string>vivo</json:string>
<json:string>yale university</json:string>
<json:string>chemical shift imaging</json:string>
<json:string>proton chemical shifts</json:string>
<json:string>paracest agents</json:string>
<json:string>imaging</json:string>
<json:string>infusion</json:string>
<json:string>body temperature</json:string>
<json:string>bruker spectrometer</json:string>
<json:string>voxel size</json:string>
<json:string>excellent agreement</json:string>
<json:string>birds method</json:string>
<json:string>proton resonances</json:string>
<json:string>renal ligation</json:string>
<json:string>phantom</json:string>
<json:string>surface coil</json:string>
<json:string>previous results</json:string>
<json:string>vivo tmdotp5</json:string>
<json:string>vivo results</json:string>
<json:string>chemical shift measurement</json:string>
<json:string>redundant deviation</json:string>
<json:string>vivo conditions</json:string>
<json:string>inner compartments</json:string>
<json:string>vivo studies</json:string>
<json:string>thulium sensor</json:string>
<json:string>fenestrated vessels</json:string>
<json:string>simultaneous temperature</json:string>
<json:string>inorganic phosphate</json:string>
<json:string>thermocouple wire</json:string>
<json:string>dummy scans</json:string>
<json:string>sagittal sinus</json:string>
<json:string>appl physiol</json:string>
<json:string>chemical shift determination</json:string>
<json:string>random noise</json:string>
<json:string>noise amplitude</json:string>
<json:string>shift reagent</json:string>
<json:string>temperature dependence</json:string>
<json:string>water protons</json:string>
<json:string>vivo temperature</json:string>
<json:string>blood volume</json:string>
<json:string>temperature mapping</json:string>
<json:string>water proton resonance frequency</json:string>
<json:string>water suppression</json:string>
<json:string>vital parameters</json:string>
<json:string>different ambient temperature conditions</json:string>
<json:string>vivo ratio</json:string>
<json:string>thermocouple wires</json:string>
<json:string>water resonance</json:string>
<json:string>temperature determination</json:string>
<json:string>smallest error</json:string>
<json:string>national institutes</json:string>
<json:string>error analysis</json:string>
<json:string>standard deviation</json:string>
<json:string>chemical exchange saturation transfer</json:string>
<json:string>results show</json:string>
<json:string>total acquisition time</json:string>
<json:string>similar conditions</json:string>
<json:string>phantom experiments</json:string>
<json:string>temperature sensitivity</json:string>
<json:string>exogenous agent</json:string>
<json:string>spectral overlap</json:string>
<json:string>acquisition time</json:string>
<json:string>oxford optronix</json:string>
<json:string>circumventricular organs</json:string>
<json:string>temperature values</json:string>
<json:string>good agreement</json:string>
<json:string>recent study</json:string>
<json:string>temperature dynamics</json:string>
<json:string>local region</json:string>
<json:string>water signal</json:string>
<json:string>biosensor imaging</json:string>
<json:string>physiological parameters</json:string>
<json:string>intracellular proteins</json:string>
<json:string>magn reson imaging</json:string>
<json:string>magnetic resonance spectroscopy</json:string>
<json:string>different conditions</json:string>
<json:string>paramagnetic lanthanide complexes</json:string>
<json:string>temperature measurements</json:string>
<json:string>bruker horizontalbore spectrometer</json:string>
<json:string>other resonances</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Daniel Coman</name>
<affiliations>
<json:string>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</json:string>
<json:string>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</json:string>
<json:string>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</json:string>
<json:string>N143 TAC, 300 Cedar Street, Magnetic Resonance Research Center, Yale University, New Haven CT 06510, USA.</json:string>
</affiliations>
</json:item>
<json:item>
<name>Hubert K. Trubel</name>
<affiliations>
<json:string>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</json:string>
<json:string>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</json:string>
<json:string>University of Witten/Herdecke, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robert E. Rycyna</name>
<affiliations>
<json:string>Bruker BioSpin MRI, Billerica, MA, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Fahmeed Hyder</name>
<affiliations>
<json:string>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</json:string>
<json:string>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</json:string>
<json:string>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</json:string>
<json:string>Biomedical Engineering, Yale University, New Haven, CT, USA</json:string>
<json:string>N143 TAC, 300 Cedar Street, Magnetic Resonance Research Center, Yale University, New Haven CT 06510, USA.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>biosensor</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>blood flow</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>lanthanide ion</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>PARACEST</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>paramagnetic</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>tumor</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>thulium</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>pH</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>temperature</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>brain</value>
</json:item>
</subject>
<articleId>
<json:string>NBM1312</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly because of lack of precise and non‐invasive methods. At 11.7 T, we demonstrate that a thulium‐based macrocyclic complex infused through the bloodstream can be used to obtain temperature and pH maps of rat brain in vivo by 1H chemical shift imaging (CSI) of the sensor itself in conjunction with a multi‐parametric model that depends on several proton resonances of the sensor. Accuracies of temperature and pH determination with the thulium sensor – which has a predominantly extracellular presence – depend on stable signals during the course of the CSI experiment as well as redundancy for temperature and pH sensitivities contained within the observed signals. The thulium‐based method compared well with other methods for temperature (1H MRS of N‐acetylaspartate and water; copper–constantan thermocouple wire) and pH (31P MRS of inorganic phosphate and phosphocreatine) assessment, as established by in vitro and in vivo studies. In vitro studies in phantoms with two compartments of different pH value observed under different ambient temperature conditions generated precise temperature and pH distribution maps. In vivo studies in α‐chloralose‐anesthetized and renal‐ligated rats revealed temperature (33–34°C) and pH (7.3–7.4) distributions in the cerebral cortex that are in agreement with observations by other methods. These results show that the thulium sensor can be used to measure temperature and pH distributions in rat brain in vivo simultaneously and accurately with using biosensor imaging of redundant. Copyright © 2008 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 791 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1832</abstractCharCount>
<pdfWordCount>7831</pdfWordCount>
<pdfCharCount>47417</pdfCharCount>
<pdfPageCount>11</pdfPageCount>
<abstractWordCount>272</abstractWordCount>
</qualityIndicators>
<title>Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>NMR in Biomedicine</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1099-1492</json:string>
</doi>
<issn>
<json:string>0952-3480</json:string>
</issn>
<eissn>
<json:string>1099-1492</json:string>
</eissn>
<publisherId>
<json:string>NBM</json:string>
</publisherId>
<volume>22</volume>
<issue>2</issue>
<pages>
<first>229</first>
<last>239</last>
<total>11</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>spectroscopy</json:string>
<json:string>radiology, nuclear medicine & medical imaging</json:string>
<json:string>biophysics</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>nuclear medicine & medical imaging</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
</inist>
</categories>
<publicationDate>2009</publicationDate>
<copyrightDate>2009</copyrightDate>
<doi>
<json:string>10.1002/nbm.1312</json:string>
</doi>
<id>2ACF5C37153A539FFA9164F726C043FFDD9D58FE</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/2ACF5C37153A539FFA9164F726C043FFDD9D58FE/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/2ACF5C37153A539FFA9164F726C043FFDD9D58FE/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/2ACF5C37153A539FFA9164F726C043FFDD9D58FE/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Brain temperature and pH measured by
<hi rend="superscript">1</hi>
H chemical shift imaging of a thulium agent</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<licence>Copyright © 2008 John Wiley & Sons, Ltd.</licence>
</availability>
<date type="published" when="2009-02"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Brain temperature and pH measured by
<hi rend="superscript">1</hi>
H chemical shift imaging of a thulium agent</title>
<title level="a" type="short" xml:lang="en">BRAIN TEMPERATURE AND PH ASSESSED BY NMR</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Daniel</forename>
<surname>Coman</surname>
</persName>
<email>daniel.coman@yale.edu</email>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>N143 TAC, 300 Cedar Street, Magnetic Resonance Research Center, Yale University, New Haven CT 06510, USA.</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Hubert K.</forename>
<surname>Trubel</surname>
</persName>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>University of Witten/Herdecke, Germany
<address>
<country key="DE"></country>
</address>
</affiliation>
<note type="foot">Bayer HealthCare AG, Wuppertal, Germany.</note>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Robert E.</forename>
<surname>Rycyna</surname>
</persName>
<affiliation>Bruker BioSpin MRI, Billerica, MA, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<note type="foot">Philips Healthcare, Highland Heights, OH, USA.</note>
</author>
<author xml:id="author-0003" role="corresp">
<persName>
<forename type="first">Fahmeed</forename>
<surname>Hyder</surname>
</persName>
<email>fahmeed.hyder@yale.edu</email>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Biomedical Engineering, Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>N143 TAC, 300 Cedar Street, Magnetic Resonance Research Center, Yale University, New Haven CT 06510, USA.</affiliation>
</author>
<idno type="istex">2ACF5C37153A539FFA9164F726C043FFDD9D58FE</idno>
<idno type="ark">ark:/67375/WNG-C20DJV64-H</idno>
<idno type="DOI">10.1002/nbm.1312</idno>
<idno type="unit">NBM1312</idno>
<idno type="toTypesetVersion">file:NBM.NBM1312.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">NMR in Biomedicine</title>
<title level="j" type="alt">NMR IN BIOMEDICINE</title>
<idno type="pISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<idno type="book-DOI">10.1002/(ISSN)1099-1492</idno>
<idno type="book-part-DOI">10.1002/nbm.v22:2</idno>
<idno type="product">NBM</idno>
<imprint>
<biblScope unit="vol">22</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="229">229</biblScope>
<biblScope unit="page" to="239">239</biblScope>
<biblScope unit="page-count">11</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2009-02"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly because of lack of precise and non‐invasive methods. At 11.7 T, we demonstrate that a thulium‐based macrocyclic complex infused through the bloodstream can be used to obtain temperature and pH maps of rat brain
<hi rend="italic">in vivo</hi>
by
<hi rend="superscript">1</hi>
H chemical shift imaging (CSI) of the sensor itself in conjunction with a multi‐parametric model that depends on several proton resonances of the sensor. Accuracies of temperature and pH determination with the thulium sensor – which has a predominantly extracellular presence – depend on stable signals during the course of the CSI experiment as well as redundancy for temperature and pH sensitivities contained within the observed signals. The thulium‐based method compared well with other methods for temperature (
<hi rend="superscript">1</hi>
H MRS of
<hi rend="italic">N</hi>
‐acetylaspartate and water; copper–constantan thermocouple wire) and pH (
<hi rend="superscript">31</hi>
P MRS of inorganic phosphate and phosphocreatine) assessment, as established by
<hi rend="italic">in vitro</hi>
and
<hi rend="italic">in vivo</hi>
studies.
<hi rend="italic">In vitro</hi>
studies in phantoms with two compartments of different pH value observed under different ambient temperature conditions generated precise temperature and pH distribution maps.
<hi rend="italic">In vivo</hi>
studies in
<hi rend="italic">α</hi>
‐chloralose‐anesthetized and renal‐ligated rats revealed temperature (33–34°C) and pH (7.3–7.4) distributions in the cerebral cortex that are in agreement with observations by other methods. These results show that the thulium sensor can be used to measure temperature and pH distributions in rat brain
<hi rend="italic">in vivo</hi>
simultaneously and accurately with using biosensor imaging of redundant. Copyright © 2008 John Wiley & Sons, Ltd.</p>
</abstract>
<abstract xml:lang="en" style="graphical">
<p>In the present work we demonstrate that a thulium‐based macrocyclic complex, TmDOTP
<hi rend="superscript">5−</hi>
, infused through the bloodstream can be used to obtain temperature and pH maps of rat brain
<hi rend="italic">in vivo</hi>
by
<hi rend="superscript">1</hi>
H chemical shift imaging in conjunction with a multi‐parametric model that depends on three proton resonances of the sensor.
<hi rend="italic">In vivo</hi>
studies in α‐chloralose‐anesthetized and renal‐ligated rats revealed temperature (33–34°C) and pH (7.3–7.4) distributions in the cerebral cortex which are in agreement with observations by other methods.
<figure type="box">
<media mimeType="image" url="urn:x-wiley:09523480:media:NBM1312:gra001"></media>
<media mimeType="image/gif" url="" rendition="webLoRes"></media>
<media mimeType="image/jpeg" url="" rendition="webOriginal"></media>
<media mimeType="image/jpeg" url="" rendition="webHiRes"></media>
</figure>
</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">biosensor</term>
<term xml:id="kwd2">blood flow</term>
<term xml:id="kwd3">lanthanide ion</term>
<term xml:id="kwd4">PARACEST</term>
<term xml:id="kwd5">paramagnetic</term>
<term xml:id="kwd6">tumor</term>
<term xml:id="kwd7">thulium</term>
<term xml:id="kwd8">pH</term>
<term xml:id="kwd9">temperature</term>
<term xml:id="kwd10">brain</term>
</keywords>
<keywords rend="articleCategory">
<term>Research Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Research Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/2ACF5C37153A539FFA9164F726C043FFDD9D58FE/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1099-1492</doi>
<issn type="print">0952-3480</issn>
<issn type="electronic">1099-1492</issn>
<idGroup>
<id type="product" value="NBM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="NMR IN BIOMEDICINE">NMR in Biomedicine</title>
<title type="subtitle">An International Journal Devoted to the Development and Application of Magnetic Resonance
<i>In vivo</i>
</title>
<title type="short">NMR Biomed.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="20">
<doi origin="wiley" registered="yes">10.1002/nbm.v22:2</doi>
<numberingGroup>
<numbering type="journalVolume" number="22">22</numbering>
<numbering type="journalIssue">2</numbering>
</numberingGroup>
<coverDate startDate="2009-02">February 2009</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="12" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/nbm.1312</doi>
<idGroup>
<id type="unit" value="NBM1312"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="11"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2008 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2008-04-03"></event>
<event type="manuscriptRevised" date="2008-06-06"></event>
<event type="manuscriptAccepted" date="2008-06-19"></event>
<event type="firstOnline" date="2009-01-07"></event>
<event type="publishedOnlineFinalForm" date="2009-02-03"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:HeaderRef result:HeaderRef" date="2010-03-16"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-03"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">229</numbering>
<numbering type="pageLast">239</numbering>
</numberingGroup>
<correspondenceTo>N143 TAC, 300 Cedar Street, Magnetic Resonance Research Center, Yale University, New Haven CT 06510, USA.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:NBM.NBM1312.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="5"></count>
<count type="tableTotal" number="4"></count>
<count type="referenceTotal" number="49"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Brain temperature and pH measured by
<sup>1</sup>
H chemical shift imaging of a thulium agent</title>
<title type="short" xml:lang="en">BRAIN TEMPERATURE AND PH ASSESSED BY NMR</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1 #af2 #af3" corresponding="yes">
<personName>
<givenNames>Daniel</givenNames>
<familyName>Coman</familyName>
</personName>
<contactDetails>
<email>daniel.coman@yale.edu</email>
</contactDetails>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1 #af3 #af4" noteRef="#fn1">
<personName>
<givenNames>Hubert K.</givenNames>
<familyName>Trubel</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af5" noteRef="#fn2">
<personName>
<givenNames>Robert E.</givenNames>
<familyName>Rycyna</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af1 #af2 #af3 #af6" corresponding="yes">
<personName>
<givenNames>Fahmeed</givenNames>
<familyName>Hyder</familyName>
</personName>
<contactDetails>
<email>fahmeed.hyder@yale.edu</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="US" type="organization">
<unparsedAffiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="US" type="organization">
<unparsedAffiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af4" countryCode="DE" type="organization">
<unparsedAffiliation>University of Witten/Herdecke, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af5" countryCode="US" type="organization">
<unparsedAffiliation>Bruker BioSpin MRI, Billerica, MA, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af6" countryCode="US" type="organization">
<unparsedAffiliation>Biomedical Engineering, Yale University, New Haven, CT, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">biosensor</keyword>
<keyword xml:id="kwd2">blood flow</keyword>
<keyword xml:id="kwd3">lanthanide ion</keyword>
<keyword xml:id="kwd4">PARACEST</keyword>
<keyword xml:id="kwd5">paramagnetic</keyword>
<keyword xml:id="kwd6">tumor</keyword>
<keyword xml:id="kwd7">thulium</keyword>
<keyword xml:id="kwd8">pH</keyword>
<keyword xml:id="kwd9">temperature</keyword>
<keyword xml:id="kwd10">brain</keyword>
</keywordGroup>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly because of lack of precise and non‐invasive methods. At 11.7 T, we demonstrate that a thulium‐based macrocyclic complex infused through the bloodstream can be used to obtain temperature and pH maps of rat brain
<i>in vivo</i>
by
<sup>1</sup>
H chemical shift imaging (CSI) of the sensor itself in conjunction with a multi‐parametric model that depends on several proton resonances of the sensor. Accuracies of temperature and pH determination with the thulium sensor – which has a predominantly extracellular presence – depend on stable signals during the course of the CSI experiment as well as redundancy for temperature and pH sensitivities contained within the observed signals. The thulium‐based method compared well with other methods for temperature (
<sup>1</sup>
H MRS of
<i>N</i>
‐acetylaspartate and water; copper–constantan thermocouple wire) and pH (
<sup>31</sup>
P MRS of inorganic phosphate and phosphocreatine) assessment, as established by
<i>in vitro</i>
and
<i>in vivo</i>
studies.
<i>In vitro</i>
studies in phantoms with two compartments of different pH value observed under different ambient temperature conditions generated precise temperature and pH distribution maps.
<i>In vivo</i>
studies in
<i>α</i>
‐chloralose‐anesthetized and renal‐ligated rats revealed temperature (33–34°C) and pH (7.3–7.4) distributions in the cerebral cortex that are in agreement with observations by other methods. These results show that the thulium sensor can be used to measure temperature and pH distributions in rat brain
<i>in vivo</i>
simultaneously and accurately with using biosensor imaging of redundant. Copyright © 2008 John Wiley & Sons, Ltd.</p>
</abstract>
<abstract type="graphical" xml:lang="en">
<p>In the present work we demonstrate that a thulium‐based macrocyclic complex, TmDOTP
<sup>5−</sup>
, infused through the bloodstream can be used to obtain temperature and pH maps of rat brain
<i>in vivo</i>
by
<sup>1</sup>
H chemical shift imaging in conjunction with a multi‐parametric model that depends on three proton resonances of the sensor.
<i>In vivo</i>
studies in α‐chloralose‐anesthetized and renal‐ligated rats revealed temperature (33–34°C) and pH (7.3–7.4) distributions in the cerebral cortex which are in agreement with observations by other methods.
<blockFixed type="graphic">
<mediaResourceGroup>
<mediaResource alt="image" eRights="yes" copyright="John Wiley & Sons, Ltd." href="urn:x-wiley:09523480:media:NBM1312:gra001"></mediaResource>
<mediaResource alt="thumbnail image" rendition="webLoRes" mimeType="image/gif" href=""></mediaResource>
<mediaResource alt="original image" rendition="webOriginal" mimeType="image/jpeg" href=""></mediaResource>
<mediaResource alt="magnified image" rendition="webHiRes" mimeType="image/jpeg" href=""></mediaResource>
</mediaResourceGroup>
</blockFixed>
</p>
</abstract>
</abstractGroup>
</contentMeta>
<noteGroup>
<note xml:id="fn1">
<p>Bayer HealthCare AG, Wuppertal, Germany.</p>
</note>
<note xml:id="fn2">
<p>Philips Healthcare, Highland Heights, OH, USA.</p>
</note>
</noteGroup>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>BRAIN TEMPERATURE AND PH ASSESSED BY NMR</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Coman</namePart>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</affiliation>
<affiliation>E-mail: daniel.coman@yale.edu</affiliation>
<affiliation>Correspondence address: N143 TAC, 300 Cedar Street, Magnetic Resonance Research Center, Yale University, New Haven CT 06510, USA.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hubert K.</namePart>
<namePart type="family">Trubel</namePart>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</affiliation>
<affiliation>University of Witten/Herdecke, Germany</affiliation>
<description>Bayer HealthCare AG, Wuppertal, Germany.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert E.</namePart>
<namePart type="family">Rycyna</namePart>
<affiliation>Bruker BioSpin MRI, Billerica, MA, USA</affiliation>
<description>Philips Healthcare, Highland Heights, OH, USA.</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fahmeed</namePart>
<namePart type="family">Hyder</namePart>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</affiliation>
<affiliation>Biomedical Engineering, Yale University, New Haven, CT, USA</affiliation>
<affiliation>E-mail: fahmeed.hyder@yale.edu</affiliation>
<affiliation>Correspondence address: N143 TAC, 300 Cedar Street, Magnetic Resonance Research Center, Yale University, New Haven CT 06510, USA.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2009-02</dateIssued>
<dateCaptured encoding="w3cdtf">2008-04-03</dateCaptured>
<dateValid encoding="w3cdtf">2008-06-19</dateValid>
<copyrightDate encoding="w3cdtf">2009</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">5</extent>
<extent unit="tables">4</extent>
<extent unit="references">49</extent>
</physicalDescription>
<abstract lang="en">Temperature and pH are two of the most important physiological parameters and are believed to be tightly regulated because they are intricately related to energy metabolism in living organisms. Temperature and/or pH data in mammalian brain are scarce, however, mainly because of lack of precise and non‐invasive methods. At 11.7 T, we demonstrate that a thulium‐based macrocyclic complex infused through the bloodstream can be used to obtain temperature and pH maps of rat brain in vivo by 1H chemical shift imaging (CSI) of the sensor itself in conjunction with a multi‐parametric model that depends on several proton resonances of the sensor. Accuracies of temperature and pH determination with the thulium sensor – which has a predominantly extracellular presence – depend on stable signals during the course of the CSI experiment as well as redundancy for temperature and pH sensitivities contained within the observed signals. The thulium‐based method compared well with other methods for temperature (1H MRS of N‐acetylaspartate and water; copper–constantan thermocouple wire) and pH (31P MRS of inorganic phosphate and phosphocreatine) assessment, as established by in vitro and in vivo studies. In vitro studies in phantoms with two compartments of different pH value observed under different ambient temperature conditions generated precise temperature and pH distribution maps. In vivo studies in α‐chloralose‐anesthetized and renal‐ligated rats revealed temperature (33–34°C) and pH (7.3–7.4) distributions in the cerebral cortex that are in agreement with observations by other methods. These results show that the thulium sensor can be used to measure temperature and pH distributions in rat brain in vivo simultaneously and accurately with using biosensor imaging of redundant. Copyright © 2008 John Wiley & Sons, Ltd.</abstract>
<abstract type="graphical" lang="en">In the present work we demonstrate that a thulium‐based macrocyclic complex, TmDOTP5−, infused through the bloodstream can be used to obtain temperature and pH maps of rat brain in vivo by 1H chemical shift imaging in conjunction with a multi‐parametric model that depends on three proton resonances of the sensor. In vivo studies in α‐chloralose‐anesthetized and renal‐ligated rats revealed temperature (33–34°C) and pH (7.3–7.4) distributions in the cerebral cortex which are in agreement with observations by other methods.</abstract>
<subject lang="en">
<genre>keywords</genre>
<topic>biosensor</topic>
<topic>blood flow</topic>
<topic>lanthanide ion</topic>
<topic>PARACEST</topic>
<topic>paramagnetic</topic>
<topic>tumor</topic>
<topic>thulium</topic>
<topic>pH</topic>
<topic>temperature</topic>
<topic>brain</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>NMR in Biomedicine</title>
<subTitle>An International Journal Devoted to the Development and Application of Magnetic Resonance In vivo</subTitle>
</titleInfo>
<titleInfo type="abbreviated">
<title>NMR Biomed.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0952-3480</identifier>
<identifier type="eISSN">1099-1492</identifier>
<identifier type="DOI">10.1002/(ISSN)1099-1492</identifier>
<identifier type="PublisherID">NBM</identifier>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>22</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>2</number>
</detail>
<extent unit="pages">
<start>229</start>
<end>239</end>
<total>11</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">2ACF5C37153A539FFA9164F726C043FFDD9D58FE</identifier>
<identifier type="ark">ark:/67375/WNG-C20DJV64-H</identifier>
<identifier type="DOI">10.1002/nbm.1312</identifier>
<identifier type="ArticleID">NBM1312</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2008 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/2ACF5C37153A539FFA9164F726C043FFDD9D58FE/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000940 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000940 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:2ACF5C37153A539FFA9164F726C043FFDD9D58FE
   |texte=   Brain temperature and pH measured by 1H chemical shift imaging of a thulium agent
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024