Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In vivo three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution

Identifieur interne : 000578 ( Main/Exploration ); précédent : 000577; suivant : 000579

In vivo three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution

Auteurs : Daniel Coman [États-Unis] ; Robin A. De Graaf [États-Unis] ; Douglas L. Rothman [États-Unis] ; Fahmeed Hyder [États-Unis]

Source :

RBID : ISTEX:DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7

Descripteurs français

English descriptors

Abstract

Spectroscopic signals which emanate from complexes between paramagnetic lanthanide (III) ions (e.g. Tm3+) and macrocyclic chelates (e.g. 1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate, or DOTMA4–) are sensitive to physiology (e.g. temperature). Because nonexchanging protons from these lanthanide‐based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from nonexchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous two‐dimensional CSI experiments with such lanthanide‐based macrocyclics allowed acquisition from ~12‐μL voxels in rat brain within 5 min using rectangular encoding of k space. Because cubical encoding of k space in three dimensions for whole‐brain coverage increases the CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here, we demonstrate a CSI acquisition method to improve three‐dimensional molecular imaging capabilities with lanthanide‐based macrocyclics. Using TmDOTMA–, we show datasets from a 20 × 20 × 20‐mm3 field of view with voxels of ~1 μL effective volume acquired within 5 min (at 11.7 T) for temperature mapping. By employing reduced spherical encoding with Gaussian weighting (RESEGAW) instead of cubical encoding of k space, a significant increase in CSI signal is obtained. In vitro and in vivo three‐dimensional CSI data with TmDOTMA–, and presumably similar lanthanide‐based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal resolution molecular mapping with BIRDS. Copyright © 2013 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/nbm.2995


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In vivo three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
</author>
<author>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
</author>
<author>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/nbm.2995</idno>
<idno type="url">https://api.istex.fr/document/DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003129</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003129</idno>
<idno type="wicri:Area/Istex/Curation">003129</idno>
<idno type="wicri:Area/Istex/Checkpoint">000035</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000035</idno>
<idno type="wicri:doubleKey">0952-3480:2013:Coman D:in:vivo:three</idno>
<idno type="wicri:source">PMC</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800475</idno>
<idno type="RBID">PMC:3800475</idno>
<idno type="wicri:Area/Pmc/Corpus">000334</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000334</idno>
<idno type="wicri:Area/Pmc/Curation">000334</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000334</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000194</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000194</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="wicri:Area/PubMed/Corpus">000262</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000262</idno>
<idno type="wicri:Area/PubMed/Curation">000262</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000262</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000262</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000262</idno>
<idno type="wicri:Area/Ncbi/Merge">000713</idno>
<idno type="wicri:Area/Ncbi/Curation">000713</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000713</idno>
<idno type="wicri:doubleKey">0952-3480:2013:Coman D:in:vivo:d</idno>
<idno type="wicri:Area/Main/Merge">000578</idno>
<idno type="wicri:Area/Main/Curation">000578</idno>
<idno type="wicri:Area/Main/Exploration">000578</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">
<hi rend="italic">In vivo</hi>
three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, CT, New Haven</wicri:regionArea>
<wicri:noRegion>New Haven</wicri:noRegion>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, CT, New Haven</wicri:regionArea>
<wicri:noRegion>New Haven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, CT, New Haven</wicri:regionArea>
<wicri:noRegion>New Haven</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, CT, New Haven</wicri:regionArea>
<wicri:noRegion>New Haven</wicri:noRegion>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">NMR in Biomedicine</title>
<title level="j" type="alt">NMR IN BIOMEDICINE</title>
<idno type="ISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<imprint>
<biblScope unit="vol">26</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="1589">1589</biblScope>
<biblScope unit="page" to="1595">1595</biblScope>
<biblScope unit="page-count">7</biblScope>
<date type="published" when="2013-11">2013-11</date>
</imprint>
<idno type="ISSN">0952-3480</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0952-3480</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acquisition time</term>
<term>Animals</term>
<term>Average temperatures</term>
<term>Biomed</term>
<term>Biosensing Techniques (methods)</term>
<term>Biosensor imaging</term>
<term>Body Temperature</term>
<term>Brain (physiology)</term>
<term>Brain temperature</term>
<term>Chemical shift</term>
<term>Chemical shift imaging</term>
<term>Coman</term>
<term>Copyright</term>
<term>Corpus callosum</term>
<term>Cubical</term>
<term>Cubical dataset</term>
<term>Cubical encoding</term>
<term>Data acquisition</term>
<term>Dataset</term>
<term>Datasets</term>
<term>Effective resolution</term>
<term>Effective volume</term>
<term>Effective voxel volume</term>
<term>Encoding</term>
<term>Encoding steps</term>
<term>Experimental time</term>
<term>Gaussian</term>
<term>Gaussian weighting</term>
<term>High spatiotemporal resolution</term>
<term>Hyder</term>
<term>Imaginary parts</term>
<term>Imaging</term>
<term>Imaging, Three-Dimensional (methods)</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Magn</term>
<term>Magnetic Resonance Imaging</term>
<term>Magnetic resonance</term>
<term>Molecular Imaging (methods)</term>
<term>Molecular imaging</term>
<term>Nominal voxel volume</term>
<term>Nonexchanging protons</term>
<term>Normal Distribution</term>
<term>Organometallic Compounds</term>
<term>Phase encoding</term>
<term>Point spread function</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Redundant deviation</term>
<term>Relaxation times</term>
<term>Resegaw</term>
<term>Resegaw dataset</term>
<term>Reson</term>
<term>Rothman</term>
<term>Sampling function</term>
<term>Signal intensity</term>
<term>Somatosensory stimulation</term>
<term>Spatial resolution</term>
<term>Spatio-Temporal Analysis</term>
<term>Spatiotemporal</term>
<term>Spectroscopic</term>
<term>Spectroscopic imaging</term>
<term>Spherical encoding</term>
<term>Superior colliculus</term>
<term>Surface coil</term>
<term>Temporal resolution</term>
<term>Tmdotma</term>
<term>Total signal</term>
<term>Trubel</term>
<term>Voxel</term>
<term>Weighting</term>
<term>Window function</term>
<term>Yale university</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse spatio-temporelle</term>
<term>Animaux</term>
<term>Composés organométalliques</term>
<term>Encéphale (physiologie)</term>
<term>Imagerie moléculaire ()</term>
<term>Imagerie par résonance magnétique</term>
<term>Imagerie tridimensionnelle ()</term>
<term>Loi normale</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Techniques de biocapteur ()</term>
<term>Température du corps</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Organometallic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biosensing Techniques</term>
<term>Imaging, Three-Dimensional</term>
<term>Molecular Imaging</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Encéphale</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acquisition time</term>
<term>Animals</term>
<term>Average temperatures</term>
<term>Biomed</term>
<term>Biosensor imaging</term>
<term>Body Temperature</term>
<term>Brain temperature</term>
<term>Chemical shift</term>
<term>Chemical shift imaging</term>
<term>Coman</term>
<term>Copyright</term>
<term>Corpus callosum</term>
<term>Cubical</term>
<term>Cubical dataset</term>
<term>Cubical encoding</term>
<term>Data acquisition</term>
<term>Dataset</term>
<term>Datasets</term>
<term>Effective resolution</term>
<term>Effective volume</term>
<term>Effective voxel volume</term>
<term>Encoding</term>
<term>Encoding steps</term>
<term>Experimental time</term>
<term>Gaussian</term>
<term>Gaussian weighting</term>
<term>High spatiotemporal resolution</term>
<term>Hyder</term>
<term>Imaginary parts</term>
<term>Imaging</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Magn</term>
<term>Magnetic Resonance Imaging</term>
<term>Magnetic resonance</term>
<term>Molecular imaging</term>
<term>Nominal voxel volume</term>
<term>Nonexchanging protons</term>
<term>Normal Distribution</term>
<term>Phase encoding</term>
<term>Point spread function</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Redundant deviation</term>
<term>Relaxation times</term>
<term>Resegaw</term>
<term>Resegaw dataset</term>
<term>Reson</term>
<term>Rothman</term>
<term>Sampling function</term>
<term>Signal intensity</term>
<term>Somatosensory stimulation</term>
<term>Spatial resolution</term>
<term>Spatio-Temporal Analysis</term>
<term>Spatiotemporal</term>
<term>Spectroscopic</term>
<term>Spectroscopic imaging</term>
<term>Spherical encoding</term>
<term>Superior colliculus</term>
<term>Surface coil</term>
<term>Temporal resolution</term>
<term>Tmdotma</term>
<term>Total signal</term>
<term>Trubel</term>
<term>Voxel</term>
<term>Weighting</term>
<term>Window function</term>
<term>Yale university</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Analyse spatio-temporelle</term>
<term>Animaux</term>
<term>Composés organométalliques</term>
<term>Droit d'auteur</term>
<term>Imagerie moléculaire</term>
<term>Imagerie par résonance magnétique</term>
<term>Imagerie tridimensionnelle</term>
<term>Loi normale</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Techniques de biocapteur</term>
<term>Température du corps</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Spectroscopic signals which emanate from complexes between paramagnetic lanthanide (III) ions (e.g. Tm3+) and macrocyclic chelates (e.g. 1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate, or DOTMA4–) are sensitive to physiology (e.g. temperature). Because nonexchanging protons from these lanthanide‐based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from nonexchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous two‐dimensional CSI experiments with such lanthanide‐based macrocyclics allowed acquisition from ~12‐μL voxels in rat brain within 5 min using rectangular encoding of k space. Because cubical encoding of k space in three dimensions for whole‐brain coverage increases the CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here, we demonstrate a CSI acquisition method to improve three‐dimensional molecular imaging capabilities with lanthanide‐based macrocyclics. Using TmDOTMA–, we show datasets from a 20 × 20 × 20‐mm3 field of view with voxels of ~1 μL effective volume acquired within 5 min (at 11.7 T) for temperature mapping. By employing reduced spherical encoding with Gaussian weighting (RESEGAW) instead of cubical encoding of k space, a significant increase in CSI signal is obtained. In vitro and in vivo three‐dimensional CSI data with TmDOTMA–, and presumably similar lanthanide‐based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal resolution molecular mapping with BIRDS. Copyright © 2013 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Connecticut</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Connecticut">
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
</region>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000578 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000578 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7
   |texte=   In vivo three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024