Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In vivo 3D molecular imaging with BIRDS at high spatiotemporal resolution

Identifieur interne : 000713 ( Ncbi/Merge ); précédent : 000712; suivant : 000714

In vivo 3D molecular imaging with BIRDS at high spatiotemporal resolution

Auteurs : Daniel Coman [États-Unis] ; Robin A. De Graaf [États-Unis] ; Douglas L. Rothman [États-Unis] ; Fahmeed Hyder [États-Unis]

Source :

RBID : PMC:3800475

Descripteurs français

English descriptors

Abstract

Spectroscopic signals which emanate from complexes between paramagnetic lanthanide III ions (e.g., Tm3+) and macrocyclic chelates (e.g., 1,4,7,10-tetramethyl 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate, or DOTMA4−) are sensitive to physiology (e.g., temperature and/or pH). Because non-exchanging protons from these lanthanide-based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from non-exchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous 2D CSI experiments with such lanthanide-based macrocyclics allowed acquisition from ~12 µL voxels in rat brain within 5 minutes using rectangular encoding of k-space. Because cubical encoding of k-space in 3D for whole brain coverage increases CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here we demonstrate a CSI acquisition method to improve 3D molecular imaging capabilities with lanthanide-based macrocyclics. Using TmDOTMA, we show datasets from a 20×20×20 mm3 field-of-view with voxels of ~1 µL effective volume acquired within 5 minutes (at 11.7T) for temperature mapping. By employing reduced spherical encoding with Gaussian weighting (RESEGAW) instead of cubical encoding of k-space, a significant increase in CSI signal is obtained. In vitro and in vivo 3D CSI data with TmDOTMA, and presumably similar lanthanide-based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal molecular mapping with BIRDS.


Url:
DOI: 10.1002/nbm.2995
PubMed: 23881869
PubMed Central: 3800475

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3800475

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In vivo 3D molecular imaging with BIRDS at high spatiotemporal resolution</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23881869</idno>
<idno type="pmc">3800475</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800475</idno>
<idno type="RBID">PMC:3800475</idno>
<idno type="doi">10.1002/nbm.2995</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000334</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000334</idno>
<idno type="wicri:Area/Pmc/Curation">000334</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000334</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000194</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000194</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="wicri:Area/PubMed/Corpus">000262</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000262</idno>
<idno type="wicri:Area/PubMed/Curation">000262</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000262</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000262</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000262</idno>
<idno type="wicri:Area/Ncbi/Merge">000713</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">In vivo 3D molecular imaging with BIRDS at high spatiotemporal resolution</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">NMR in biomedicine</title>
<idno type="ISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Biosensing Techniques (methods)</term>
<term>Body Temperature</term>
<term>Brain (physiology)</term>
<term>Imaging, Three-Dimensional (methods)</term>
<term>Magnetic Resonance Imaging</term>
<term>Molecular Imaging (methods)</term>
<term>Normal Distribution</term>
<term>Organometallic Compounds</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Spatio-Temporal Analysis</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse spatio-temporelle</term>
<term>Animaux</term>
<term>Composés organométalliques</term>
<term>Encéphale (physiologie)</term>
<term>Imagerie moléculaire ()</term>
<term>Imagerie par résonance magnétique</term>
<term>Imagerie tridimensionnelle ()</term>
<term>Loi normale</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Techniques de biocapteur ()</term>
<term>Température du corps</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Organometallic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biosensing Techniques</term>
<term>Imaging, Three-Dimensional</term>
<term>Molecular Imaging</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Encéphale</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Body Temperature</term>
<term>Magnetic Resonance Imaging</term>
<term>Normal Distribution</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Spatio-Temporal Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse spatio-temporelle</term>
<term>Animaux</term>
<term>Composés organométalliques</term>
<term>Imagerie moléculaire</term>
<term>Imagerie par résonance magnétique</term>
<term>Imagerie tridimensionnelle</term>
<term>Loi normale</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Techniques de biocapteur</term>
<term>Température du corps</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Spectroscopic signals which emanate from complexes between paramagnetic lanthanide III ions (e.g., Tm
<sup>3+</sup>
) and macrocyclic chelates (e.g., 1,4,7,10-tetramethyl 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate, or DOTMA
<sup>4−</sup>
) are sensitive to physiology (e.g., temperature and/or pH). Because non-exchanging protons from these lanthanide-based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus
<italic>
<bold>B</bold>
</italic>
iosensor
<italic>
<bold>I</bold>
</italic>
maging of
<italic>
<bold>R</bold>
</italic>
edundant
<italic>
<bold>D</bold>
</italic>
eviation in
<italic>
<bold>S</bold>
</italic>
hifts (BIRDS) which originate from non-exchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous 2D CSI experiments with such lanthanide-based macrocyclics allowed acquisition from ~12 µL voxels in rat brain within 5 minutes using rectangular encoding of k-space. Because cubical encoding of k-space in 3D for whole brain coverage increases CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here we demonstrate a CSI acquisition method to improve 3D molecular imaging capabilities with lanthanide-based macrocyclics. Using TmDOTMA
<sup></sup>
, we show datasets from a 20×20×20 mm
<sup>3</sup>
field-of-view with voxels of ~1 µL effective volume acquired within 5 minutes (at 11.7T) for temperature mapping. By employing
<bold>re</bold>
duced
<bold>s</bold>
pherical
<bold>e</bold>
ncoding with
<bold>Ga</bold>
ussian
<bold>w</bold>
eighting (RESEGAW) instead of cubical encoding of k-space, a significant increase in CSI signal is obtained.
<italic>In vitro</italic>
and
<italic>in vivo</italic>
3D CSI data with TmDOTMA
<sup></sup>
, and presumably similar lanthanide-based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal molecular mapping with BIRDS.</p>
</div>
</front>
</TEI>
<double pmid="23881869">
<pmc>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In vivo 3D molecular imaging with BIRDS at high spatiotemporal resolution</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23881869</idno>
<idno type="pmc">3800475</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800475</idno>
<idno type="RBID">PMC:3800475</idno>
<idno type="doi">10.1002/nbm.2995</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000334</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000334</idno>
<idno type="wicri:Area/Pmc/Curation">000334</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000334</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000194</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000194</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">In vivo 3D molecular imaging with BIRDS at high spatiotemporal resolution</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">NMR in biomedicine</title>
<idno type="ISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Spectroscopic signals which emanate from complexes between paramagnetic lanthanide III ions (e.g., Tm
<sup>3+</sup>
) and macrocyclic chelates (e.g., 1,4,7,10-tetramethyl 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate, or DOTMA
<sup>4−</sup>
) are sensitive to physiology (e.g., temperature and/or pH). Because non-exchanging protons from these lanthanide-based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus
<italic>
<bold>B</bold>
</italic>
iosensor
<italic>
<bold>I</bold>
</italic>
maging of
<italic>
<bold>R</bold>
</italic>
edundant
<italic>
<bold>D</bold>
</italic>
eviation in
<italic>
<bold>S</bold>
</italic>
hifts (BIRDS) which originate from non-exchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous 2D CSI experiments with such lanthanide-based macrocyclics allowed acquisition from ~12 µL voxels in rat brain within 5 minutes using rectangular encoding of k-space. Because cubical encoding of k-space in 3D for whole brain coverage increases CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here we demonstrate a CSI acquisition method to improve 3D molecular imaging capabilities with lanthanide-based macrocyclics. Using TmDOTMA
<sup></sup>
, we show datasets from a 20×20×20 mm
<sup>3</sup>
field-of-view with voxels of ~1 µL effective volume acquired within 5 minutes (at 11.7T) for temperature mapping. By employing
<bold>re</bold>
duced
<bold>s</bold>
pherical
<bold>e</bold>
ncoding with
<bold>Ga</bold>
ussian
<bold>w</bold>
eighting (RESEGAW) instead of cubical encoding of k-space, a significant increase in CSI signal is obtained.
<italic>In vitro</italic>
and
<italic>in vivo</italic>
3D CSI data with TmDOTMA
<sup></sup>
, and presumably similar lanthanide-based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal molecular mapping with BIRDS.</p>
</div>
</front>
</TEI>
</pmc>
<pubmed>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In vivo three-dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution.</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA; Department of Diagnostic Radiology, Yale University, New Haven, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA; Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A" last="De Graaf">Robin A. De Graaf</name>
</author>
<author>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L" last="Rothman">Douglas L. Rothman</name>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23881869</idno>
<idno type="pmid">23881869</idno>
<idno type="doi">10.1002/nbm.2995</idno>
<idno type="wicri:Area/PubMed/Corpus">000262</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000262</idno>
<idno type="wicri:Area/PubMed/Curation">000262</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000262</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000262</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000262</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In vivo three-dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution.</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA; Department of Diagnostic Radiology, Yale University, New Haven, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA; Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A" last="De Graaf">Robin A. De Graaf</name>
</author>
<author>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L" last="Rothman">Douglas L. Rothman</name>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
</author>
</analytic>
<series>
<title level="j">NMR in biomedicine</title>
<idno type="eISSN">1099-1492</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Biosensing Techniques (methods)</term>
<term>Body Temperature</term>
<term>Brain (physiology)</term>
<term>Imaging, Three-Dimensional (methods)</term>
<term>Magnetic Resonance Imaging</term>
<term>Molecular Imaging (methods)</term>
<term>Normal Distribution</term>
<term>Organometallic Compounds</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Spatio-Temporal Analysis</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse spatio-temporelle</term>
<term>Animaux</term>
<term>Composés organométalliques</term>
<term>Encéphale (physiologie)</term>
<term>Imagerie moléculaire ()</term>
<term>Imagerie par résonance magnétique</term>
<term>Imagerie tridimensionnelle ()</term>
<term>Loi normale</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Techniques de biocapteur ()</term>
<term>Température du corps</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Organometallic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biosensing Techniques</term>
<term>Imaging, Three-Dimensional</term>
<term>Molecular Imaging</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Encéphale</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Body Temperature</term>
<term>Magnetic Resonance Imaging</term>
<term>Normal Distribution</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Spatio-Temporal Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse spatio-temporelle</term>
<term>Animaux</term>
<term>Composés organométalliques</term>
<term>Imagerie moléculaire</term>
<term>Imagerie par résonance magnétique</term>
<term>Imagerie tridimensionnelle</term>
<term>Loi normale</term>
<term>Rat Sprague-Dawley</term>
<term>Rats</term>
<term>Techniques de biocapteur</term>
<term>Température du corps</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Spectroscopic signals which emanate from complexes between paramagnetic lanthanide (III) ions (e.g. Tm(3+)) and macrocyclic chelates (e.g. 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate, or DOTMA(4-)) are sensitive to physiology (e.g. temperature). Because nonexchanging protons from these lanthanide-based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from nonexchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous two-dimensional CSI experiments with such lanthanide-based macrocyclics allowed acquisition from ~12-μL voxels in rat brain within 5 min using rectangular encoding of k space. Because cubical encoding of k space in three dimensions for whole-brain coverage increases the CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here, we demonstrate a CSI acquisition method to improve three-dimensional molecular imaging capabilities with lanthanide-based macrocyclics. Using TmDOTMA(-), we show datasets from a 20 × 20 × 20-mm(3) field of view with voxels of ~1 μL effective volume acquired within 5 min (at 11.7 T) for temperature mapping. By employing reduced spherical encoding with Gaussian weighting (RESEGAW) instead of cubical encoding of k space, a significant increase in CSI signal is obtained. In vitro and in vivo three-dimensional CSI data with TmDOTMA(-), and presumably similar lanthanide-based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal resolution molecular mapping with BIRDS.</div>
</front>
</TEI>
</pubmed>
</double>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Ncbi/Merge
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000713 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd -nk 000713 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Ncbi
   |étape=   Merge
   |type=    RBID
   |clé=     PMC:3800475
   |texte=   In vivo 3D molecular imaging with BIRDS at high spatiotemporal resolution
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Ncbi/Merge/RBID.i   -Sk "pubmed:23881869" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Ncbi/Merge/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024