Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In vivo three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution

Identifieur interne : 003129 ( Istex/Corpus ); précédent : 003128; suivant : 003130

In vivo three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution

Auteurs : Daniel Coman ; Robin A. De Graaf ; Douglas L. Rothman ; Fahmeed Hyder

Source :

RBID : ISTEX:DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7

English descriptors

Abstract

Spectroscopic signals which emanate from complexes between paramagnetic lanthanide (III) ions (e.g. Tm3+) and macrocyclic chelates (e.g. 1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate, or DOTMA4–) are sensitive to physiology (e.g. temperature). Because nonexchanging protons from these lanthanide‐based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from nonexchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous two‐dimensional CSI experiments with such lanthanide‐based macrocyclics allowed acquisition from ~12‐μL voxels in rat brain within 5 min using rectangular encoding of k space. Because cubical encoding of k space in three dimensions for whole‐brain coverage increases the CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here, we demonstrate a CSI acquisition method to improve three‐dimensional molecular imaging capabilities with lanthanide‐based macrocyclics. Using TmDOTMA–, we show datasets from a 20 × 20 × 20‐mm3 field of view with voxels of ~1 μL effective volume acquired within 5 min (at 11.7 T) for temperature mapping. By employing reduced spherical encoding with Gaussian weighting (RESEGAW) instead of cubical encoding of k space, a significant increase in CSI signal is obtained. In vitro and in vivo three‐dimensional CSI data with TmDOTMA–, and presumably similar lanthanide‐based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal resolution molecular mapping with BIRDS. Copyright © 2013 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/nbm.2995

Links to Exploration step

ISTEX:DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In vivo three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, CT, New Haven, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence to: F. Hyder/D. Coman, N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06520, USA.E‐mail: ,</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: fahmeed.hyder@yale.edudaniel.coman@yale.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Yale University, CT, New Haven, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Yale University, CT, New Haven, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Yale University, CT, New Haven, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence to: F. Hyder/D. Coman, N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06520, USA.E‐mail: ,</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: fahmeed.hyder@yale.edudaniel.coman@yale.edu</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/nbm.2995</idno>
<idno type="url">https://api.istex.fr/document/DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003129</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003129</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">
<hi rend="italic">In vivo</hi>
three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, CT, New Haven, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence to: F. Hyder/D. Coman, N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06520, USA.E‐mail: ,</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: fahmeed.hyder@yale.edudaniel.coman@yale.edu</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Yale University, CT, New Haven, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Yale University, CT, New Haven, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Yale University, CT, New Haven, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence to: F. Hyder/D. Coman, N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06520, USA.E‐mail: ,</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: fahmeed.hyder@yale.edudaniel.coman@yale.edu</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">NMR in Biomedicine</title>
<title level="j" type="alt">NMR IN BIOMEDICINE</title>
<idno type="ISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<imprint>
<biblScope unit="vol">26</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="1589">1589</biblScope>
<biblScope unit="page" to="1595">1595</biblScope>
<biblScope unit="page-count">7</biblScope>
<date type="published" when="2013-11">2013-11</date>
</imprint>
<idno type="ISSN">0952-3480</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0952-3480</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acquisition time</term>
<term>Average temperatures</term>
<term>Biomed</term>
<term>Biosensor imaging</term>
<term>Brain temperature</term>
<term>Chemical shift</term>
<term>Chemical shift imaging</term>
<term>Coman</term>
<term>Copyright</term>
<term>Corpus callosum</term>
<term>Cubical</term>
<term>Cubical dataset</term>
<term>Cubical encoding</term>
<term>Data acquisition</term>
<term>Dataset</term>
<term>Datasets</term>
<term>Effective resolution</term>
<term>Effective volume</term>
<term>Effective voxel volume</term>
<term>Encoding</term>
<term>Encoding steps</term>
<term>Experimental time</term>
<term>Gaussian</term>
<term>Gaussian weighting</term>
<term>High spatiotemporal resolution</term>
<term>Hyder</term>
<term>Imaginary parts</term>
<term>Imaging</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Magn</term>
<term>Magnetic resonance</term>
<term>Molecular imaging</term>
<term>Nominal voxel volume</term>
<term>Nonexchanging protons</term>
<term>Phase encoding</term>
<term>Point spread function</term>
<term>Redundant deviation</term>
<term>Relaxation times</term>
<term>Resegaw</term>
<term>Resegaw dataset</term>
<term>Reson</term>
<term>Rothman</term>
<term>Sampling function</term>
<term>Signal intensity</term>
<term>Somatosensory stimulation</term>
<term>Spatial resolution</term>
<term>Spatiotemporal</term>
<term>Spectroscopic</term>
<term>Spectroscopic imaging</term>
<term>Spherical encoding</term>
<term>Superior colliculus</term>
<term>Surface coil</term>
<term>Temporal resolution</term>
<term>Tmdotma</term>
<term>Total signal</term>
<term>Trubel</term>
<term>Voxel</term>
<term>Weighting</term>
<term>Window function</term>
<term>Yale university</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Acquisition time</term>
<term>Average temperatures</term>
<term>Biomed</term>
<term>Biosensor imaging</term>
<term>Brain temperature</term>
<term>Chemical shift</term>
<term>Chemical shift imaging</term>
<term>Coman</term>
<term>Copyright</term>
<term>Corpus callosum</term>
<term>Cubical</term>
<term>Cubical dataset</term>
<term>Cubical encoding</term>
<term>Data acquisition</term>
<term>Dataset</term>
<term>Datasets</term>
<term>Effective resolution</term>
<term>Effective volume</term>
<term>Effective voxel volume</term>
<term>Encoding</term>
<term>Encoding steps</term>
<term>Experimental time</term>
<term>Gaussian</term>
<term>Gaussian weighting</term>
<term>High spatiotemporal resolution</term>
<term>Hyder</term>
<term>Imaginary parts</term>
<term>Imaging</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Magn</term>
<term>Magnetic resonance</term>
<term>Molecular imaging</term>
<term>Nominal voxel volume</term>
<term>Nonexchanging protons</term>
<term>Phase encoding</term>
<term>Point spread function</term>
<term>Redundant deviation</term>
<term>Relaxation times</term>
<term>Resegaw</term>
<term>Resegaw dataset</term>
<term>Reson</term>
<term>Rothman</term>
<term>Sampling function</term>
<term>Signal intensity</term>
<term>Somatosensory stimulation</term>
<term>Spatial resolution</term>
<term>Spatiotemporal</term>
<term>Spectroscopic</term>
<term>Spectroscopic imaging</term>
<term>Spherical encoding</term>
<term>Superior colliculus</term>
<term>Surface coil</term>
<term>Temporal resolution</term>
<term>Tmdotma</term>
<term>Total signal</term>
<term>Trubel</term>
<term>Voxel</term>
<term>Weighting</term>
<term>Window function</term>
<term>Yale university</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Spectroscopic signals which emanate from complexes between paramagnetic lanthanide (III) ions (e.g. Tm3+) and macrocyclic chelates (e.g. 1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate, or DOTMA4–) are sensitive to physiology (e.g. temperature). Because nonexchanging protons from these lanthanide‐based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from nonexchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous two‐dimensional CSI experiments with such lanthanide‐based macrocyclics allowed acquisition from ~12‐μL voxels in rat brain within 5 min using rectangular encoding of k space. Because cubical encoding of k space in three dimensions for whole‐brain coverage increases the CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here, we demonstrate a CSI acquisition method to improve three‐dimensional molecular imaging capabilities with lanthanide‐based macrocyclics. Using TmDOTMA–, we show datasets from a 20 × 20 × 20‐mm3 field of view with voxels of ~1 μL effective volume acquired within 5 min (at 11.7 T) for temperature mapping. By employing reduced spherical encoding with Gaussian weighting (RESEGAW) instead of cubical encoding of k space, a significant increase in CSI signal is obtained. In vitro and in vivo three‐dimensional CSI data with TmDOTMA–, and presumably similar lanthanide‐based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal resolution molecular mapping with BIRDS. Copyright © 2013 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>encoding</json:string>
<json:string>tmdotma</json:string>
<json:string>resegaw</json:string>
<json:string>cubical</json:string>
<json:string>voxel</json:string>
<json:string>cubical encoding</json:string>
<json:string>encoding steps</json:string>
<json:string>datasets</json:string>
<json:string>hyder</json:string>
<json:string>biomed</json:string>
<json:string>dataset</json:string>
<json:string>spherical encoding</json:string>
<json:string>coman</json:string>
<json:string>magn</json:string>
<json:string>gaussian weighting</json:string>
<json:string>reson</json:string>
<json:string>spectroscopic</json:string>
<json:string>imaging</json:string>
<json:string>spatiotemporal</json:string>
<json:string>copyright</json:string>
<json:string>john wiley sons</json:string>
<json:string>effective voxel volume</json:string>
<json:string>weighting</json:string>
<json:string>trubel</json:string>
<json:string>lanthanide</json:string>
<json:string>rothman</json:string>
<json:string>biosensor imaging</json:string>
<json:string>high spatiotemporal resolution</json:string>
<json:string>yale university</json:string>
<json:string>chemical shift imaging</json:string>
<json:string>chemical shift</json:string>
<json:string>redundant deviation</json:string>
<json:string>effective volume</json:string>
<json:string>superior colliculus</json:string>
<json:string>spatial resolution</json:string>
<json:string>average temperatures</json:string>
<json:string>window function</json:string>
<json:string>experimental time</json:string>
<json:string>acquisition time</json:string>
<json:string>sampling function</json:string>
<json:string>signal intensity</json:string>
<json:string>brain temperature</json:string>
<json:string>total signal</json:string>
<json:string>gaussian</json:string>
<json:string>data acquisition</json:string>
<json:string>imaginary parts</json:string>
<json:string>cubical dataset</json:string>
<json:string>resegaw dataset</json:string>
<json:string>surface coil</json:string>
<json:string>temporal resolution</json:string>
<json:string>nonexchanging protons</json:string>
<json:string>somatosensory stimulation</json:string>
<json:string>effective resolution</json:string>
<json:string>corpus callosum</json:string>
<json:string>nominal voxel volume</json:string>
<json:string>phase encoding</json:string>
<json:string>spectroscopic imaging</json:string>
<json:string>point spread function</json:string>
<json:string>relaxation times</json:string>
<json:string>molecular imaging</json:string>
<json:string>magnetic resonance</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Daniel Coman</name>
<affiliations>
<json:string>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</json:string>
<json:string>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</json:string>
<json:string>Department of Diagnostic Radiology, Yale University, CT, New Haven, USA</json:string>
<json:string>Correspondence to: F. Hyder/D. Coman, N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06520, USA.E‐mail: ,</json:string>
<json:string>E-mail: fahmeed.hyder@yale.edudaniel.coman@yale.edu</json:string>
</affiliations>
</json:item>
<json:item>
<name>Robin A. de Graaf</name>
<affiliations>
<json:string>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</json:string>
<json:string>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</json:string>
<json:string>Department of Biomedical Engineering, Yale University, CT, New Haven, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Douglas L. Rothman</name>
<affiliations>
<json:string>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</json:string>
<json:string>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</json:string>
<json:string>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</json:string>
<json:string>Department of Biomedical Engineering, Yale University, CT, New Haven, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Fahmeed Hyder</name>
<affiliations>
<json:string>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</json:string>
<json:string>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</json:string>
<json:string>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</json:string>
<json:string>Department of Biomedical Engineering, Yale University, CT, New Haven, USA</json:string>
<json:string>Correspondence to: F. Hyder/D. Coman, N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06520, USA.E‐mail: ,</json:string>
<json:string>E-mail: fahmeed.hyder@yale.edudaniel.coman@yale.edu</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>methyl protons</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>chemical shift imaging</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>lanthanide</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>thulium</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>temperature</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>BIRDS</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>k space</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>rat brain</value>
</json:item>
</subject>
<articleId>
<json:string>NBM2995</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<qualityIndicators>
<score>8.5</score>
<pdfVersion>1.4</pdfVersion>
<pdfPageSize>593.972 x 782.986 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1833</abstractCharCount>
<pdfWordCount>5787</pdfWordCount>
<pdfCharCount>34325</pdfCharCount>
<pdfPageCount>7</pdfPageCount>
<abstractWordCount>250</abstractWordCount>
</qualityIndicators>
<title>In vivo three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>NMR in Biomedicine</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1099-1492</json:string>
</doi>
<issn>
<json:string>0952-3480</json:string>
</issn>
<eissn>
<json:string>1099-1492</json:string>
</eissn>
<publisherId>
<json:string>NBM</json:string>
</publisherId>
<volume>26</volume>
<issue>11</issue>
<pages>
<first>1589</first>
<last>1595</last>
<total>7</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Research article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>spectroscopy</json:string>
<json:string>radiology, nuclear medicine & medical imaging</json:string>
<json:string>biophysics</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>nuclear medicine & medical imaging</json:string>
</scienceMetrix>
</categories>
<publicationDate>2013</publicationDate>
<copyrightDate>2013</copyrightDate>
<doi>
<json:string>10.1002/nbm.2995</json:string>
</doi>
<id>DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">
<hi rend="italic">In vivo</hi>
three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Publishing Ltd</publisher>
<availability>
<licence>Copyright © 2013 John Wiley & Sons, Ltd.</licence>
</availability>
<date type="published" when="2013-11"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">
<hi rend="italic">In vivo</hi>
three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution</title>
<title level="a" type="short">WHOLE‐BRAIN 3D CSI WITH TmDOTMA–</title>
<author xml:id="author-0000" role="corresp">
<persName>
<forename type="first">Daniel</forename>
<surname>Coman</surname>
</persName>
<affiliation>
<orgName>Magnetic Resonance Research Center (MRRC)</orgName>
<orgName>Yale University</orgName>
<address>
<settlement type="city">New Haven</settlement>
<region>CT</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>
<orgName>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR)</orgName>
<orgName>Yale University</orgName>
<address>
<settlement type="city">New Haven</settlement>
<region>CT</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>
<orgName>Department of Diagnostic Radiology</orgName>
<orgName>Yale University</orgName>
<address>
<settlement type="city">New Haven</settlement>
<region>CT</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>Correspondence to: F. Hyder/D. Coman, N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06520, USA. E‐mail: fahmeed.hyder@yale.edu, daniel.coman@yale.edu</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Robin A.</forename>
<surname>Graaf</surname>
</persName>
<affiliation>
<orgName>Magnetic Resonance Research Center (MRRC)</orgName>
<orgName>Yale University</orgName>
<address>
<settlement type="city">New Haven</settlement>
<region>CT</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>
<orgName>Department of Diagnostic Radiology</orgName>
<orgName>Yale University</orgName>
<address>
<settlement type="city">New Haven</settlement>
<region>CT</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>
<orgName>Department of Biomedical Engineering</orgName>
<orgName>Yale University</orgName>
<address>
<settlement type="city">New Haven</settlement>
<region>CT</region>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">Douglas L.</forename>
<surname>Rothman</surname>
</persName>
<affiliation>
<orgName>Magnetic Resonance Research Center (MRRC)</orgName>
<orgName>Yale University</orgName>
<address>
<settlement type="city">New Haven</settlement>
<region>CT</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>
<orgName>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR)</orgName>
<orgName>Yale University</orgName>
<address>
<settlement type="city">New Haven</settlement>
<region>CT</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>
<orgName>Department of Diagnostic Radiology</orgName>
<orgName>Yale University</orgName>
<address>
<settlement type="city">New Haven</settlement>
<region>CT</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>
<orgName>Department of Biomedical Engineering</orgName>
<orgName>Yale University</orgName>
<address>
<settlement type="city">New Haven</settlement>
<region>CT</region>
<country key="US">USA</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003" role="corresp">
<persName>
<forename type="first">Fahmeed</forename>
<surname>Hyder</surname>
</persName>
<affiliation>
<orgName>Magnetic Resonance Research Center (MRRC)</orgName>
<orgName>Yale University</orgName>
<address>
<settlement type="city">New Haven</settlement>
<region>CT</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>
<orgName>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR)</orgName>
<orgName>Yale University</orgName>
<address>
<settlement type="city">New Haven</settlement>
<region>CT</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>
<orgName>Department of Diagnostic Radiology</orgName>
<orgName>Yale University</orgName>
<address>
<settlement type="city">New Haven</settlement>
<region>CT</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>
<orgName>Department of Biomedical Engineering</orgName>
<orgName>Yale University</orgName>
<address>
<settlement type="city">New Haven</settlement>
<region>CT</region>
<country key="US">USA</country>
</address>
</affiliation>
<affiliation>Correspondence to: F. Hyder/D. Coman, N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06520, USA. E‐mail: fahmeed.hyder@yale.edu, daniel.coman@yale.edu</affiliation>
</author>
<idno type="istex">DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7</idno>
<idno type="ark">ark:/67375/WNG-JNHD88D3-3</idno>
<idno type="DOI">10.1002/nbm.2995</idno>
<idno type="unit">NBM2995</idno>
<idno type="toTypesetVersion">file:NBM.NBM2995.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">NMR in Biomedicine</title>
<title level="j" type="alt">NMR IN BIOMEDICINE</title>
<idno type="pISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<idno type="book-DOI">10.1002/(ISSN)1099-1492</idno>
<idno type="book-part-DOI">10.1002/nbm.v26.11</idno>
<idno type="product">NBM</idno>
<imprint>
<biblScope unit="vol">26</biblScope>
<biblScope unit="issue">11</biblScope>
<biblScope unit="page" from="1589">1589</biblScope>
<biblScope unit="page" to="1595">1595</biblScope>
<biblScope unit="page-count">7</biblScope>
<date type="published" when="2013-11"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p>Spectroscopic signals which emanate from complexes between paramagnetic lanthanide (III) ions (e.g. Tm
<hi rend="superscript">3+</hi>
) and macrocyclic chelates (e.g. 1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate, or DOTMA
<hi rend="superscript">4–</hi>
) are sensitive to physiology (e.g. temperature). Because nonexchanging protons from these lanthanide‐based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from nonexchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous two‐dimensional CSI experiments with such lanthanide‐based macrocyclics allowed acquisition from ~12‐μL voxels in rat brain within 5 min using rectangular encoding of
<hi rend="italic">k</hi>
space. Because cubical encoding of
<hi rend="italic">k</hi>
space in three dimensions for whole‐brain coverage increases the CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here, we demonstrate a CSI acquisition method to improve three‐dimensional molecular imaging capabilities with lanthanide‐based macrocyclics. Using TmDOTMA
<hi rend="superscript"></hi>
, we show datasets from a 20 × 20 × 20‐mm
<hi rend="superscript">3</hi>
field of view with voxels of ~1 μL effective volume acquired within 5 min (at 11.7 T) for temperature mapping. By employing reduced spherical encoding with Gaussian weighting (RESEGAW) instead of cubical encoding of
<hi rend="italic">k</hi>
space, a significant increase in CSI signal is obtained.
<hi rend="italic">In vitro</hi>
and
<hi rend="italic">in vivo</hi>
three‐dimensional CSI data with TmDOTMA
<hi rend="superscript"></hi>
, and presumably similar lanthanide‐based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal resolution molecular mapping with BIRDS. Copyright © 2013 John Wiley & Sons, Ltd.</p>
</abstract>
<abstract style="graphical">
<p>Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) from complexes between paramagnetic lanthanide (III) ions (e.g Tm
<hi rend="superscript">3+</hi>
) and macrocyclic chelates (e.g 1,4,7,10‐tetraacetate, DOTMA
<hi rend="superscript">4–</hi>
) allows rapid chemical shift imaging (CSI) data acquisition. The CSI signal is significantly enhanced by employing reduced spherical encoding with Gaussian weighting (RESEGAW) of
<hi rend="italic">k</hi>
space.
<hi rend="italic">In vitro</hi>
and
<hi rend="italic">in vivo</hi>
three‐dimensional CSI data with an effective volume of 1.0 μL acquired within 5 min using TmDOTMA
<hi rend="superscript"></hi>
suggest that acqusition employing RESEGAW can be used for molecular mapping with BIRDS.
<figure type="box">
<media mimeType="image" url="urn:x-wiley:09523480:media:nbm2995:nbm2995-toc-0001"></media>
</figure>
</p>
</abstract>
<textClass>
<keywords>
<term xml:id="nbm2995-kwd-0001">methyl protons</term>
<term xml:id="nbm2995-kwd-0002">chemical shift imaging</term>
<term xml:id="nbm2995-kwd-0003">lanthanide</term>
<term xml:id="nbm2995-kwd-0004">thulium</term>
<term xml:id="nbm2995-kwd-0005">temperature</term>
<term xml:id="nbm2995-kwd-0006">BIRDS</term>
<term xml:id="nbm2995-kwd-0007">
<hi rend="italic">k</hi>
space</term>
<term xml:id="nbm2995-kwd-0008">rat brain</term>
</keywords>
<keywords rend="articleCategory">
<term>Research article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Research articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="nbm2995">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)1099-1492</doi>
<issn type="print">0952-3480</issn>
<issn type="electronic">1099-1492</issn>
<idGroup>
<id type="product" value="NBM"></id>
</idGroup>
<titleGroup>
<title type="main" sort="NMR IN BIOMEDICINE">NMR in Biomedicine</title>
<title type="short">NMR Biomed.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="110">
<doi>10.1002/nbm.v26.11</doi>
<copyright ownership="publisher">Copyright © 2013 John Wiley & Sons, Ltd.</copyright>
<numberingGroup>
<numbering type="journalVolume" number="26">26</numbering>
<numbering type="journalIssue">11</numbering>
</numberingGroup>
<coverDate startDate="2013-11">November 2013</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="290" type="article" status="forIssue">
<doi>10.1002/nbm.2995</doi>
<idGroup>
<id type="unit" value="NBM2995"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="7"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research article</title>
<title type="tocHeading1">Research articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2013 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2013-01-09"></event>
<event type="manuscriptRevised" date="2013-05-31"></event>
<event type="manuscriptAccepted" date="2013-06-10"></event>
<event type="xmlCreated" agent="SPi Global" date="2013-06-30"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.2.5 mode:FullText" date="2013-10-18"></event>
<event type="publishedOnlineEarlyUnpaginated" date="2013-07-24"></event>
<event type="firstOnline" date="2013-07-24"></event>
<event type="publishedOnlineFinalForm" date="2013-10-18"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.6.4 mode:FullText" date="2015-10-04"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">1589</numbering>
<numbering type="pageLast">1595</numbering>
</numberingGroup>
<correspondenceTo>
<lineatedText>
<line>Correspondence to: F. Hyder/D. Coman, N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06520, USA.</line>
<line>E‐mail:
<email>fahmeed.hyder@yale.edu</email>
,
<email>daniel.coman@yale.edu</email>
</line>
</lineatedText>
</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:NBM.NBM2995.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<titleGroup>
<title type="main">
<i>In vivo</i>
three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution</title>
<title type="short">WHOLE‐BRAIN 3D CSI WITH TmDOTMA
<sup></sup>
</title>
<title type="shortAuthors">D. Coman
<i>et al</i>
.</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="nbm2995-cr-0001" affiliationRef="#nbm2995-aff-0001 #nbm2995-aff-0002 #nbm2995-aff-0003" corresponding="yes">
<personName>
<givenNames>Daniel</givenNames>
<familyName>Coman</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="nbm2995-cr-0002" affiliationRef="#nbm2995-aff-0001 #nbm2995-aff-0003 #nbm2995-aff-0004">
<personName>
<givenNames>Robin A.</givenNames>
<familyNamePrefix>de</familyNamePrefix>
<familyName>Graaf</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="nbm2995-cr-0003" affiliationRef="#nbm2995-aff-0001 #nbm2995-aff-0002 #nbm2995-aff-0003 #nbm2995-aff-0004">
<personName>
<givenNames>Douglas L.</givenNames>
<familyName>Rothman</familyName>
</personName>
</creator>
<creator creatorRole="author" xml:id="nbm2995-cr-0004" affiliationRef="#nbm2995-aff-0001 #nbm2995-aff-0002 #nbm2995-aff-0003 #nbm2995-aff-0004" corresponding="yes">
<personName>
<givenNames>Fahmeed</givenNames>
<familyName>Hyder</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="US" type="organization" xml:id="nbm2995-aff-0001">
<orgDiv>Magnetic Resonance Research Center (MRRC)</orgDiv>
<orgName>Yale University</orgName>
<address>
<city>New Haven</city>
<countryPart>CT</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="nbm2995-aff-0002">
<orgDiv>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR)</orgDiv>
<orgName>Yale University</orgName>
<address>
<city>New Haven</city>
<countryPart>CT</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="nbm2995-aff-0003">
<orgDiv>Department of Diagnostic Radiology</orgDiv>
<orgName>Yale University</orgName>
<address>
<city>New Haven</city>
<countryPart>CT</countryPart>
<country>USA</country>
</address>
</affiliation>
<affiliation countryCode="US" type="organization" xml:id="nbm2995-aff-0004">
<orgDiv>Department of Biomedical Engineering</orgDiv>
<orgName>Yale University</orgName>
<address>
<city>New Haven</city>
<countryPart>CT</countryPart>
<country>USA</country>
</address>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="nbm2995-kwd-0001">methyl protons</keyword>
<keyword xml:id="nbm2995-kwd-0002">chemical shift imaging</keyword>
<keyword xml:id="nbm2995-kwd-0003">lanthanide</keyword>
<keyword xml:id="nbm2995-kwd-0004">thulium</keyword>
<keyword xml:id="nbm2995-kwd-0005">temperature</keyword>
<keyword xml:id="nbm2995-kwd-0006">BIRDS</keyword>
<keyword xml:id="nbm2995-kwd-0007">
<i>k</i>
space</keyword>
<keyword xml:id="nbm2995-kwd-0008">rat brain</keyword>
</keywordGroup>
<supportingInformation xml:id="nbm2995-supinf-0001">
<supportingInfoItem xml:id="nbm2995-supitem-0001">
<mediaResource alt="supplementary data" mimeType="image/tiff" rendition="webOriginal" href="urn-x:wiley:09523480:media:nbm2995:nbm2995-sup-0001-FigureS1"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
<supportingInfoItem xml:id="nbm2995-supitem-0002">
<mediaResource alt="supplementary data" mimeType="image/tiff" rendition="webOriginal" href="urn-x:wiley:09523480:media:nbm2995:nbm2995-sup-0002-FigureS2"></mediaResource>
<caption>Supporting info item</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p>Spectroscopic signals which emanate from complexes between paramagnetic lanthanide (III) ions (e.g. Tm
<sup>3+</sup>
) and macrocyclic chelates (e.g. 1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate, or DOTMA
<sup>4–</sup>
) are sensitive to physiology (e.g. temperature). Because nonexchanging protons from these lanthanide‐based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from nonexchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous two‐dimensional CSI experiments with such lanthanide‐based macrocyclics allowed acquisition from ~12‐μL voxels in rat brain within 5 min using rectangular encoding of
<i>k</i>
space. Because cubical encoding of
<i>k</i>
space in three dimensions for whole‐brain coverage increases the CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here, we demonstrate a CSI acquisition method to improve three‐dimensional molecular imaging capabilities with lanthanide‐based macrocyclics. Using TmDOTMA
<sup></sup>
, we show datasets from a 20 × 20 × 20‐mm
<sup>3</sup>
field of view with voxels of ~1 μL effective volume acquired within 5 min (at 11.7 T) for temperature mapping. By employing reduced spherical encoding with Gaussian weighting (RESEGAW) instead of cubical encoding of
<i>k</i>
space, a significant increase in CSI signal is obtained.
<i>In vitro</i>
and
<i>in vivo</i>
three‐dimensional CSI data with TmDOTMA
<sup></sup>
, and presumably similar lanthanide‐based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal resolution molecular mapping with BIRDS. Copyright © 2013 John Wiley & Sons, Ltd.</p>
</abstract>
<abstract type="graphical">
<p>Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) from complexes between paramagnetic lanthanide (III) ions (e.g Tm
<sup>3+</sup>
) and macrocyclic chelates (e.g 1,4,7,10‐tetraacetate, DOTMA
<sup>4–</sup>
) allows rapid chemical shift imaging (CSI) data acquisition. The CSI signal is significantly enhanced by employing reduced spherical encoding with Gaussian weighting (RESEGAW) of
<i>k</i>
space.
<i>In vitro</i>
and
<i>in vivo</i>
three‐dimensional CSI data with an effective volume of 1.0 μL acquired within 5 min using TmDOTMA
<sup></sup>
suggest that acqusition employing RESEGAW can be used for molecular mapping with BIRDS.
<blockFixed type="graphic">
<mediaResourceGroup>
<mediaResource alt="image" href="urn:x-wiley:09523480:media:nbm2995:nbm2995-toc-0001"></mediaResource>
</mediaResourceGroup>
</blockFixed>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>In vivo three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>WHOLE‐BRAIN 3D CSI WITH TmDOTMA–</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>In vivo three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Coman</namePart>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, CT, New Haven, USA</affiliation>
<affiliation>Correspondence to: F. Hyder/D. Coman, N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06520, USA.E‐mail: ,</affiliation>
<affiliation>E-mail: fahmeed.hyder@yale.edudaniel.coman@yale.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robin A.</namePart>
<namePart type="family">de Graaf</namePart>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</affiliation>
<affiliation>Department of Biomedical Engineering, Yale University, CT, New Haven, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Douglas L.</namePart>
<namePart type="family">Rothman</namePart>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</affiliation>
<affiliation>Department of Biomedical Engineering, Yale University, CT, New Haven, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fahmeed</namePart>
<namePart type="family">Hyder</namePart>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</affiliation>
<affiliation>Department of Biomedical Engineering, Yale University, CT, New Haven, USA</affiliation>
<affiliation>Correspondence to: F. Hyder/D. Coman, N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06520, USA.E‐mail: ,</affiliation>
<affiliation>E-mail: fahmeed.hyder@yale.edudaniel.coman@yale.edu</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2013-11</dateIssued>
<dateCreated encoding="w3cdtf">2013-06-30</dateCreated>
<dateCaptured encoding="w3cdtf">2013-01-09</dateCaptured>
<dateValid encoding="w3cdtf">2013-06-10</dateValid>
<copyrightDate encoding="w3cdtf">2013</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<abstract>Spectroscopic signals which emanate from complexes between paramagnetic lanthanide (III) ions (e.g. Tm3+) and macrocyclic chelates (e.g. 1,4,7,10‐tetramethyl‐1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate, or DOTMA4–) are sensitive to physiology (e.g. temperature). Because nonexchanging protons from these lanthanide‐based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from nonexchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous two‐dimensional CSI experiments with such lanthanide‐based macrocyclics allowed acquisition from ~12‐μL voxels in rat brain within 5 min using rectangular encoding of k space. Because cubical encoding of k space in three dimensions for whole‐brain coverage increases the CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here, we demonstrate a CSI acquisition method to improve three‐dimensional molecular imaging capabilities with lanthanide‐based macrocyclics. Using TmDOTMA–, we show datasets from a 20 × 20 × 20‐mm3 field of view with voxels of ~1 μL effective volume acquired within 5 min (at 11.7 T) for temperature mapping. By employing reduced spherical encoding with Gaussian weighting (RESEGAW) instead of cubical encoding of k space, a significant increase in CSI signal is obtained. In vitro and in vivo three‐dimensional CSI data with TmDOTMA–, and presumably similar lanthanide‐based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal resolution molecular mapping with BIRDS. Copyright © 2013 John Wiley & Sons, Ltd.</abstract>
<abstract type="graphical">Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) from complexes between paramagnetic lanthanide (III) ions (e.g Tm3+) and macrocyclic chelates (e.g 1,4,7,10‐tetraacetate, DOTMA4–) allows rapid chemical shift imaging (CSI) data acquisition. The CSI signal is significantly enhanced by employing reduced spherical encoding with Gaussian weighting (RESEGAW) of k space. In vitro and in vivo three‐dimensional CSI data with an effective volume of 1.0 μL acquired within 5 min using TmDOTMA–suggest that acqusition employing RESEGAW can be used for molecular mapping with BIRDS.</abstract>
<note type="additional physical form">Supporting info itemSupporting info item</note>
<subject>
<genre>keywords</genre>
<topic>methyl protons</topic>
<topic>chemical shift imaging</topic>
<topic>lanthanide</topic>
<topic>thulium</topic>
<topic>temperature</topic>
<topic>BIRDS</topic>
<topic>k space</topic>
<topic>rat brain</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>NMR in Biomedicine</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>NMR Biomed.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>article-category</genre>
<topic>Research article</topic>
</subject>
<identifier type="ISSN">0952-3480</identifier>
<identifier type="eISSN">1099-1492</identifier>
<identifier type="DOI">10.1002/(ISSN)1099-1492</identifier>
<identifier type="PublisherID">NBM</identifier>
<part>
<date>2013</date>
<detail type="volume">
<caption>vol.</caption>
<number>26</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>11</number>
</detail>
<extent unit="pages">
<start>1589</start>
<end>1595</end>
<total>7</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7</identifier>
<identifier type="ark">ark:/67375/WNG-JNHD88D3-3</identifier>
<identifier type="DOI">10.1002/nbm.2995</identifier>
<identifier type="ArticleID">NBM2995</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2013 John Wiley & Sons, Ltd.Copyright © 2013 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003129 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 003129 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:DECA4C899D3CCF4703BFC9CC4DFF8A80450FB1A7
   |texte=   In vivo three‐dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024