Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In vivo three-dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution.

Identifieur interne : 000262 ( PubMed/Corpus ); précédent : 000261; suivant : 000263

In vivo three-dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution.

Auteurs : Daniel Coman ; Robin A. De Graaf ; Douglas L. Rothman ; Fahmeed Hyder

Source :

RBID : pubmed:23881869

English descriptors

Abstract

Spectroscopic signals which emanate from complexes between paramagnetic lanthanide (III) ions (e.g. Tm(3+)) and macrocyclic chelates (e.g. 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate, or DOTMA(4-)) are sensitive to physiology (e.g. temperature). Because nonexchanging protons from these lanthanide-based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from nonexchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous two-dimensional CSI experiments with such lanthanide-based macrocyclics allowed acquisition from ~12-μL voxels in rat brain within 5 min using rectangular encoding of k space. Because cubical encoding of k space in three dimensions for whole-brain coverage increases the CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here, we demonstrate a CSI acquisition method to improve three-dimensional molecular imaging capabilities with lanthanide-based macrocyclics. Using TmDOTMA(-), we show datasets from a 20 × 20 × 20-mm(3) field of view with voxels of ~1 μL effective volume acquired within 5 min (at 11.7 T) for temperature mapping. By employing reduced spherical encoding with Gaussian weighting (RESEGAW) instead of cubical encoding of k space, a significant increase in CSI signal is obtained. In vitro and in vivo three-dimensional CSI data with TmDOTMA(-), and presumably similar lanthanide-based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal resolution molecular mapping with BIRDS.

DOI: 10.1002/nbm.2995
PubMed: 23881869

Links to Exploration step

pubmed:23881869

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In vivo three-dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution.</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation>
<nlm:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA; Department of Diagnostic Radiology, Yale University, New Haven, CT, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A" last="De Graaf">Robin A. De Graaf</name>
</author>
<author>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L" last="Rothman">Douglas L. Rothman</name>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23881869</idno>
<idno type="pmid">23881869</idno>
<idno type="doi">10.1002/nbm.2995</idno>
<idno type="wicri:Area/PubMed/Corpus">000262</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000262</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In vivo three-dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution.</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation>
<nlm:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA; Department of Diagnostic Radiology, Yale University, New Haven, CT, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A" last="De Graaf">Robin A. De Graaf</name>
</author>
<author>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L" last="Rothman">Douglas L. Rothman</name>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
</author>
</analytic>
<series>
<title level="j">NMR in biomedicine</title>
<idno type="eISSN">1099-1492</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Biosensing Techniques (methods)</term>
<term>Body Temperature</term>
<term>Brain (physiology)</term>
<term>Imaging, Three-Dimensional (methods)</term>
<term>Magnetic Resonance Imaging</term>
<term>Molecular Imaging (methods)</term>
<term>Normal Distribution</term>
<term>Organometallic Compounds</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Spatio-Temporal Analysis</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Organometallic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biosensing Techniques</term>
<term>Imaging, Three-Dimensional</term>
<term>Molecular Imaging</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Body Temperature</term>
<term>Magnetic Resonance Imaging</term>
<term>Normal Distribution</term>
<term>Rats</term>
<term>Rats, Sprague-Dawley</term>
<term>Spatio-Temporal Analysis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Spectroscopic signals which emanate from complexes between paramagnetic lanthanide (III) ions (e.g. Tm(3+)) and macrocyclic chelates (e.g. 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate, or DOTMA(4-)) are sensitive to physiology (e.g. temperature). Because nonexchanging protons from these lanthanide-based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from nonexchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous two-dimensional CSI experiments with such lanthanide-based macrocyclics allowed acquisition from ~12-μL voxels in rat brain within 5 min using rectangular encoding of k space. Because cubical encoding of k space in three dimensions for whole-brain coverage increases the CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here, we demonstrate a CSI acquisition method to improve three-dimensional molecular imaging capabilities with lanthanide-based macrocyclics. Using TmDOTMA(-), we show datasets from a 20 × 20 × 20-mm(3) field of view with voxels of ~1 μL effective volume acquired within 5 min (at 11.7 T) for temperature mapping. By employing reduced spherical encoding with Gaussian weighting (RESEGAW) instead of cubical encoding of k space, a significant increase in CSI signal is obtained. In vitro and in vivo three-dimensional CSI data with TmDOTMA(-), and presumably similar lanthanide-based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal resolution molecular mapping with BIRDS.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23881869</PMID>
<DateCreated>
<Year>2013</Year>
<Month>10</Month>
<Day>18</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>05</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1099-1492</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>NMR in biomedicine</Title>
<ISOAbbreviation>NMR Biomed</ISOAbbreviation>
</Journal>
<ArticleTitle>In vivo three-dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution.</ArticleTitle>
<Pagination>
<MedlinePgn>1589-95</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/nbm.2995</ELocationID>
<Abstract>
<AbstractText>Spectroscopic signals which emanate from complexes between paramagnetic lanthanide (III) ions (e.g. Tm(3+)) and macrocyclic chelates (e.g. 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate, or DOTMA(4-)) are sensitive to physiology (e.g. temperature). Because nonexchanging protons from these lanthanide-based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus, Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from nonexchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous two-dimensional CSI experiments with such lanthanide-based macrocyclics allowed acquisition from ~12-μL voxels in rat brain within 5 min using rectangular encoding of k space. Because cubical encoding of k space in three dimensions for whole-brain coverage increases the CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here, we demonstrate a CSI acquisition method to improve three-dimensional molecular imaging capabilities with lanthanide-based macrocyclics. Using TmDOTMA(-), we show datasets from a 20 × 20 × 20-mm(3) field of view with voxels of ~1 μL effective volume acquired within 5 min (at 11.7 T) for temperature mapping. By employing reduced spherical encoding with Gaussian weighting (RESEGAW) instead of cubical encoding of k space, a significant increase in CSI signal is obtained. In vitro and in vivo three-dimensional CSI data with TmDOTMA(-), and presumably similar lanthanide-based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal resolution molecular mapping with BIRDS.</AbstractText>
<CopyrightInformation>Copyright © 2013 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Coman</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA; Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA; Department of Diagnostic Radiology, Yale University, New Haven, CT, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Graaf</LastName>
<ForeName>Robin A</ForeName>
<Initials>RA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rothman</LastName>
<ForeName>Douglas L</ForeName>
<Initials>DL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hyder</LastName>
<ForeName>Fahmeed</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 NS-52519</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 NS052519</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA-140102</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA140102</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB-011968</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EB011968</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>NMR Biomed</MedlineTA>
<NlmUniqueID>8915233</NlmUniqueID>
<ISSNLinking>0952-3480</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009942">Organometallic Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C550981">thulium(III) 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 2006 Jan;26(1):68-78</RefSource>
<PMID Version="1">15959461</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomed Tech (Berl). 2004 Oct;49(10):279-81</RefSource>
<PMID Version="1">15566077</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2007 Dec;58(6):1182-95</RefSource>
<PMID Version="1">17969013</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20546-51</RefSource>
<PMID Version="1">18079290</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2008 Jan;59(1):52-8</RefSource>
<PMID Version="1">18050343</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 2008 May;21(4):410-6</RefSource>
<PMID Version="1">18435491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Invest Radiol. 2008 Dec;43(12):861-70</RefSource>
<PMID Version="1">19002058</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 2009 Feb;22(2):229-39</RefSource>
<PMID Version="1">19130468</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2009 Apr;109(2):494-501</RefSource>
<PMID Version="1">19200336</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 2010 Apr;23(3):277-85</RefSource>
<PMID Version="1">19957287</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2010 May;63(5):1210-8</RefSource>
<PMID Version="1">20432292</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 2011 Dec;24(10):1216-25</RefSource>
<PMID Version="1">22020775</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2013 Jun;73:59-70</RefSource>
<PMID Version="1">23384526</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 2013 Oct;26(10):1299-307</RefSource>
<PMID Version="1">23553945</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1999 Dec;42(6):997-1003</RefSource>
<PMID Version="1">10571918</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2003 Apr;94(4):1641-9</RefSource>
<PMID Version="1">12626478</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biomed Tech (Berl). 2003 Nov;48(11):298-300</RefSource>
<PMID Version="1">14661532</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Intensive Care Med. 2004 Sep;30(9):1829-33</RefSource>
<PMID Version="1">15185071</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Phys. 1987 Jul-Aug;14(4):640-5</RefSource>
<PMID Version="1">3627004</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1993 Dec;30(6):661-71</RefSource>
<PMID Version="1">8139447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1993 Dec;30(6):696-703</RefSource>
<PMID Version="1">8139451</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1994 Jun;31(6):645-51</RefSource>
<PMID Version="1">8057817</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1996 Apr;35(4):457-64</RefSource>
<PMID Version="1">8992194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1996 Sep;36(3):469-73</RefSource>
<PMID Version="1">8875420</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 1999 Apr;19(4):376-9</RefSource>
<PMID Version="1">10197507</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Appl Physiol. 2007 Sep;101(1):3-17</RefSource>
<PMID Version="1">17429680</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015374">Biosensing Techniques</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001831">Body Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D021621">Imaging, Three-Dimensional</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008279">Magnetic Resonance Imaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D057054">Molecular Imaging</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016011">Normal Distribution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009942">Organometallic Compounds</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D051381">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017207">Rats, Sprague-Dawley</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D062211">Spatio-Temporal Analysis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS499741</OtherID>
<OtherID Source="NLM">PMC3800475</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">BIRDS</Keyword>
<Keyword MajorTopicYN="N">chemical shift imaging</Keyword>
<Keyword MajorTopicYN="N">k space</Keyword>
<Keyword MajorTopicYN="N">lanthanide</Keyword>
<Keyword MajorTopicYN="N">methyl protons</Keyword>
<Keyword MajorTopicYN="N">rat brain</Keyword>
<Keyword MajorTopicYN="N">temperature</Keyword>
<Keyword MajorTopicYN="N">thulium</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>1</Month>
<Day>9</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>5</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>6</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>7</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23881869</ArticleId>
<ArticleId IdType="doi">10.1002/nbm.2995</ArticleId>
<ArticleId IdType="pmc">PMC3800475</ArticleId>
<ArticleId IdType="mid">NIHMS499741</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000262 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000262 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23881869
   |texte=   In vivo three-dimensional molecular imaging with Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) at high spatiotemporal resolution.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:23881869" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024