Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In vivo 3D molecular imaging with BIRDS at high spatiotemporal resolution

Identifieur interne : 000194 ( Pmc/Checkpoint ); précédent : 000193; suivant : 000195

In vivo 3D molecular imaging with BIRDS at high spatiotemporal resolution

Auteurs : Daniel Coman [États-Unis] ; Robin A. De Graaf [États-Unis] ; Douglas L. Rothman [États-Unis] ; Fahmeed Hyder [États-Unis]

Source :

RBID : PMC:3800475

Abstract

Spectroscopic signals which emanate from complexes between paramagnetic lanthanide III ions (e.g., Tm3+) and macrocyclic chelates (e.g., 1,4,7,10-tetramethyl 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate, or DOTMA4−) are sensitive to physiology (e.g., temperature and/or pH). Because non-exchanging protons from these lanthanide-based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from non-exchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous 2D CSI experiments with such lanthanide-based macrocyclics allowed acquisition from ~12 µL voxels in rat brain within 5 minutes using rectangular encoding of k-space. Because cubical encoding of k-space in 3D for whole brain coverage increases CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here we demonstrate a CSI acquisition method to improve 3D molecular imaging capabilities with lanthanide-based macrocyclics. Using TmDOTMA, we show datasets from a 20×20×20 mm3 field-of-view with voxels of ~1 µL effective volume acquired within 5 minutes (at 11.7T) for temperature mapping. By employing reduced spherical encoding with Gaussian weighting (RESEGAW) instead of cubical encoding of k-space, a significant increase in CSI signal is obtained. In vitro and in vivo 3D CSI data with TmDOTMA, and presumably similar lanthanide-based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal molecular mapping with BIRDS.


Url:
DOI: 10.1002/nbm.2995
PubMed: 23881869
PubMed Central: 3800475


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3800475

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In vivo 3D molecular imaging with BIRDS at high spatiotemporal resolution</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23881869</idno>
<idno type="pmc">3800475</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800475</idno>
<idno type="RBID">PMC:3800475</idno>
<idno type="doi">10.1002/nbm.2995</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000334</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000334</idno>
<idno type="wicri:Area/Pmc/Curation">000334</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000334</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000194</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Checkpoint">000194</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">In vivo 3D molecular imaging with BIRDS at high spatiotemporal resolution</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A2">Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A3">Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:aff id="A4">Department of Biomedical Engineering, Yale University, New Haven, CT, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">NMR in biomedicine</title>
<idno type="ISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">Spectroscopic signals which emanate from complexes between paramagnetic lanthanide III ions (e.g., Tm
<sup>3+</sup>
) and macrocyclic chelates (e.g., 1,4,7,10-tetramethyl 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate, or DOTMA
<sup>4−</sup>
) are sensitive to physiology (e.g., temperature and/or pH). Because non-exchanging protons from these lanthanide-based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus
<italic>
<bold>B</bold>
</italic>
iosensor
<italic>
<bold>I</bold>
</italic>
maging of
<italic>
<bold>R</bold>
</italic>
edundant
<italic>
<bold>D</bold>
</italic>
eviation in
<italic>
<bold>S</bold>
</italic>
hifts (BIRDS) which originate from non-exchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous 2D CSI experiments with such lanthanide-based macrocyclics allowed acquisition from ~12 µL voxels in rat brain within 5 minutes using rectangular encoding of k-space. Because cubical encoding of k-space in 3D for whole brain coverage increases CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here we demonstrate a CSI acquisition method to improve 3D molecular imaging capabilities with lanthanide-based macrocyclics. Using TmDOTMA
<sup></sup>
, we show datasets from a 20×20×20 mm
<sup>3</sup>
field-of-view with voxels of ~1 µL effective volume acquired within 5 minutes (at 11.7T) for temperature mapping. By employing
<bold>re</bold>
duced
<bold>s</bold>
pherical
<bold>e</bold>
ncoding with
<bold>Ga</bold>
ussian
<bold>w</bold>
eighting (RESEGAW) instead of cubical encoding of k-space, a significant increase in CSI signal is obtained.
<italic>In vitro</italic>
and
<italic>in vivo</italic>
3D CSI data with TmDOTMA
<sup></sup>
, and presumably similar lanthanide-based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal molecular mapping with BIRDS.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">8915233</journal-id>
<journal-id journal-id-type="pubmed-jr-id">1782</journal-id>
<journal-id journal-id-type="nlm-ta">NMR Biomed</journal-id>
<journal-id journal-id-type="iso-abbrev">NMR Biomed</journal-id>
<journal-title-group>
<journal-title>NMR in biomedicine</journal-title>
</journal-title-group>
<issn pub-type="ppub">0952-3480</issn>
<issn pub-type="epub">1099-1492</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23881869</article-id>
<article-id pub-id-type="pmc">3800475</article-id>
<article-id pub-id-type="doi">10.1002/nbm.2995</article-id>
<article-id pub-id-type="manuscript">NIHMS499741</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>In vivo 3D molecular imaging with BIRDS at high spatiotemporal resolution</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Coman</surname>
<given-names>Daniel</given-names>
</name>
<xref ref-type="aff" rid="A1"></xref>
<xref ref-type="aff" rid="A2">§</xref>
<xref ref-type="aff" rid="A3">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>de Graaf</surname>
<given-names>Robin A.</given-names>
</name>
<xref ref-type="aff" rid="A1"></xref>
<xref ref-type="aff" rid="A3">*</xref>
<xref ref-type="aff" rid="A4"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Rothman</surname>
<given-names>Douglas L.</given-names>
</name>
<xref ref-type="aff" rid="A1"></xref>
<xref ref-type="aff" rid="A2">§</xref>
<xref ref-type="aff" rid="A3">*</xref>
<xref ref-type="aff" rid="A4"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Hyder</surname>
<given-names>Fahmeed</given-names>
</name>
<xref ref-type="aff" rid="A1"></xref>
<xref ref-type="aff" rid="A2">§</xref>
<xref ref-type="aff" rid="A3">*</xref>
<xref ref-type="aff" rid="A4"></xref>
</contrib>
</contrib-group>
<aff id="A1">
<label></label>
Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</aff>
<aff id="A2">
<label>§</label>
Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA;</aff>
<aff id="A3">
<label>*</label>
Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</aff>
<aff id="A4">
<label></label>
Department of Biomedical Engineering, Yale University, New Haven, CT, USA</aff>
<author-notes>
<corresp id="cor1">Correspondence and reprint requests to: D.S. Fahmeed Hyder / Daniel Coman, N135 TAC (MRRC), 300 Cedar Street, Yale University Tel: +1-203-785-6205, New Haven, CT 06520, USA Fax: +1-203-785-6643,
<email>fahmeed.hyder@yale.edu /daniel.coman@yale.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>29</day>
<month>7</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>24</day>
<month>7</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="ppub">
<month>11</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>01</day>
<month>11</month>
<year>2014</year>
</pub-date>
<volume>26</volume>
<issue>11</issue>
<fpage>1589</fpage>
<lpage>1595</lpage>
<abstract>
<p id="P1">Spectroscopic signals which emanate from complexes between paramagnetic lanthanide III ions (e.g., Tm
<sup>3+</sup>
) and macrocyclic chelates (e.g., 1,4,7,10-tetramethyl 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate, or DOTMA
<sup>4−</sup>
) are sensitive to physiology (e.g., temperature and/or pH). Because non-exchanging protons from these lanthanide-based macrocyclic agents have relaxation times on the order of a few milliseconds, rapid data acquisition is possible with chemical shift imaging (CSI). Thus
<italic>
<bold>B</bold>
</italic>
iosensor
<italic>
<bold>I</bold>
</italic>
maging of
<italic>
<bold>R</bold>
</italic>
edundant
<italic>
<bold>D</bold>
</italic>
eviation in
<italic>
<bold>S</bold>
</italic>
hifts (BIRDS) which originate from non-exchanging protons of these paramagnetic agents, but exclude water proton detection, can allow molecular imaging. Previous 2D CSI experiments with such lanthanide-based macrocyclics allowed acquisition from ~12 µL voxels in rat brain within 5 minutes using rectangular encoding of k-space. Because cubical encoding of k-space in 3D for whole brain coverage increases CSI acquisition time to several tens of minutes or more, a faster CSI technique is required for BIRDS to be of practical use. Here we demonstrate a CSI acquisition method to improve 3D molecular imaging capabilities with lanthanide-based macrocyclics. Using TmDOTMA
<sup></sup>
, we show datasets from a 20×20×20 mm
<sup>3</sup>
field-of-view with voxels of ~1 µL effective volume acquired within 5 minutes (at 11.7T) for temperature mapping. By employing
<bold>re</bold>
duced
<bold>s</bold>
pherical
<bold>e</bold>
ncoding with
<bold>Ga</bold>
ussian
<bold>w</bold>
eighting (RESEGAW) instead of cubical encoding of k-space, a significant increase in CSI signal is obtained.
<italic>In vitro</italic>
and
<italic>in vivo</italic>
3D CSI data with TmDOTMA
<sup></sup>
, and presumably similar lanthanide-based macrocyclics, suggest that acquisition using RESEGAW can be used for high spatiotemporal molecular mapping with BIRDS.</p>
</abstract>
<kwd-group>
<kwd>methyl protons</kwd>
<kwd>chemical shift imaging</kwd>
<kwd>lanthanide</kwd>
<kwd>thulium</kwd>
<kwd>temperature</kwd>
<kwd>BIRDS</kwd>
<kwd>k-space</kwd>
<kwd>rat brain</kwd>
</kwd-group>
<funding-group>
<award-group>
<funding-source country="United States">National Institute of Biomedical Imaging and Bioengineering : NIBIB</funding-source>
<award-id>R01 EB011968 || EB</award-id>
</award-group>
<award-group>
<funding-source country="United States">National Cancer Institute : NCI</funding-source>
<award-id>R01 CA140102 || CA</award-id>
</award-group>
<award-group>
<funding-source country="United States">National Institute of Neurological Disorders and Stroke : NINDS</funding-source>
<award-id>P30 NS052519 || NS</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
</pmc>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Connecticut</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Connecticut">
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
</region>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
<name sortKey="De Graaf, Robin A" sort="De Graaf, Robin A" uniqKey="De Graaf R" first="Robin A." last="De Graaf">Robin A. De Graaf</name>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
<name sortKey="Rothman, Douglas L" sort="Rothman, Douglas L" uniqKey="Rothman D" first="Douglas L." last="Rothman">Douglas L. Rothman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000194 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000194 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:3800475
   |texte=   In vivo 3D molecular imaging with BIRDS at high spatiotemporal resolution
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:23881869" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024