Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

InSb quantum dots and quantum rings in a narrow-gap InAsSbP matrix

Identifieur interne : 000151 ( Russie/Analysis ); précédent : 000150; suivant : 000152

InSb quantum dots and quantum rings in a narrow-gap InAsSbP matrix

Auteurs : RBID : Pascal:09-0317158

Descripteurs français

English descriptors

Abstract

We report a study of InSb quantum dots and quantum rings grown on InAs(100) substrate by LPE-MOVPE combine method. Characterization of InSb/InAs(Sb,P) quantum dots was performed using atomic force microscopy and transmission electron microscopy. The bimodal growth of uncapped InSb quantum dots was observed in the temperature range T=420-450 °C. The low-density (5×108 cm-2) large quantum dots with dimensions of 12-14 nm in height and 45-50 nm in diameter are appeared at 445 °C, whereas high-density (1×1010 cm-2) dislocation-free small quantum dots with dimensions of 3-5 nm in height and 11-13 nm in diameter were obtained at 430 °C. Capping of the InSb quantum dots by binary InAs or InAsSbP epilayers lattice-matched with InAs substrate was performed using MOVPE method. Tunnel-related behavior in a forward curve of I-V characteristics was observed in heterostructures with buried InSb quantum dots inserted in InAs p-n junction. Evolution of electroluminescence spectra on driving current at negative bias and suppression of negative luminescence from buried InSb/InAs quantum dots were found out in the spectral range 3-4 μm at 300 K. Deposition from the InSb melt over the InAsSb0.05P0.10 capping layer resulted in the formation of InSb quantum rings with outer and inner diameters about 20-30 nm and 15-18 nm respectively. Surface density of the quantum rings of 2.6× 1010 cm-2 was reached at 430 °C.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0317158

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">InSb quantum dots and quantum rings in a narrow-gap InAsSbP matrix</title>
<author>
<name sortKey="Moiseev, K D" uniqKey="Moiseev K">K. D. Moiseev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A.F. Ioffe Physico-Technical Institute, RAS, 26 Politekhnicheskaya</s1>
<s2>St. Petersburg, 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St. Petersburg, 194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mikhailova, M P" uniqKey="Mikhailova M">M. P. Mikhailova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A.F. Ioffe Physico-Technical Institute, RAS, 26 Politekhnicheskaya</s1>
<s2>St. Petersburg, 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St. Petersburg, 194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parkhomenko, Ya A" uniqKey="Parkhomenko Y">Ya. A. Parkhomenko</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A.F. Ioffe Physico-Technical Institute, RAS, 26 Politekhnicheskaya</s1>
<s2>St. Petersburg, 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St. Petersburg, 194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gushchina, E V" uniqKey="Gushchina E">E. V. Gushchina</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A.F. Ioffe Physico-Technical Institute, RAS, 26 Politekhnicheskaya</s1>
<s2>St. Petersburg, 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St. Petersburg, 194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kizhaev, S S" uniqKey="Kizhaev S">S. S. Kizhaev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A.F. Ioffe Physico-Technical Institute, RAS, 26 Politekhnicheskaya</s1>
<s2>St. Petersburg, 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St. Petersburg, 194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ivanov, E V" uniqKey="Ivanov E">E. V. Ivanov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A.F. Ioffe Physico-Technical Institute, RAS, 26 Politekhnicheskaya</s1>
<s2>St. Petersburg, 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St. Petersburg, 194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bert, N A" uniqKey="Bert N">N. A. Bert</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A.F. Ioffe Physico-Technical Institute, RAS, 26 Politekhnicheskaya</s1>
<s2>St. Petersburg, 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St. Petersburg, 194021</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yakovlev, Yu P" uniqKey="Yakovlev Y">Yu. P. Yakovlev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>A.F. Ioffe Physico-Technical Institute, RAS, 26 Politekhnicheskaya</s1>
<s2>St. Petersburg, 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St. Petersburg, 194021</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">09-0317158</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0317158 INIST</idno>
<idno type="RBID">Pascal:09-0317158</idno>
<idno type="wicri:Area/Main/Corpus">005383</idno>
<idno type="wicri:Area/Main/Repository">005199</idno>
<idno type="wicri:Area/Russie/Extraction">000151</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antimony</term>
<term>Atomic force microscopy</term>
<term>Binary compounds</term>
<term>Dislocations</term>
<term>Electroluminescence</term>
<term>Heterostructures</term>
<term>IV characteristic</term>
<term>Indium Arsenides</term>
<term>Indium antimonides</term>
<term>Indium arsenides</term>
<term>Inorganic compounds</term>
<term>LPE</term>
<term>Luminescence</term>
<term>MOVPE method</term>
<term>Mismatch lattice</term>
<term>Nanostructured materials</term>
<term>Narrow band gap semiconductors</term>
<term>Quantum dots</term>
<term>Quantum ring</term>
<term>Transmission electron microscopy</term>
<term>Tunnel effect</term>
<term>VPE</term>
<term>p n junctions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Electroluminescence</term>
<term>Luminescence</term>
<term>Epitaxie phase liquide</term>
<term>Microscopie force atomique</term>
<term>Microscopie électronique transmission</term>
<term>Caractéristique courant tension</term>
<term>Dislocation</term>
<term>Accommodation réseau</term>
<term>Effet tunnel</term>
<term>Point quantique</term>
<term>Hétérostructure</term>
<term>Composé binaire</term>
<term>Indium Arséniure</term>
<term>Composé minéral</term>
<term>Méthode MOVPE</term>
<term>Jonction p n</term>
<term>Nanomatériau</term>
<term>Epitaxie phase vapeur</term>
<term>Antimoniure d'indium</term>
<term>Anneau quantique</term>
<term>Semiconducteur bande interdite étroite</term>
<term>Arséniure d'indium</term>
<term>Antimoine</term>
<term>InAs</term>
<term>As In</term>
<term>0130C</term>
<term>8107</term>
<term>InSb</term>
<term>InAsSbP</term>
<term>Substrat InAs</term>
<term>0779L</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Composé minéral</term>
<term>Antimoine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report a study of InSb quantum dots and quantum rings grown on InAs(100) substrate by LPE-MOVPE combine method. Characterization of InSb/InAs(Sb,P) quantum dots was performed using atomic force microscopy and transmission electron microscopy. The bimodal growth of uncapped InSb quantum dots was observed in the temperature range T=420-450 °C. The low-density (5×10
<sup>8</sup>
cm
<sup>-2</sup>
) large quantum dots with dimensions of 12-14 nm in height and 45-50 nm in diameter are appeared at 445 °C, whereas high-density (1×10
<sup>10</sup>
cm
<sup>-2</sup>
) dislocation-free small quantum dots with dimensions of 3-5 nm in height and 11-13 nm in diameter were obtained at 430 °C. Capping of the InSb quantum dots by binary InAs or InAsSbP epilayers lattice-matched with InAs substrate was performed using MOVPE method. Tunnel-related behavior in a forward curve of I-V characteristics was observed in heterostructures with buried InSb quantum dots inserted in InAs p-n junction. Evolution of electroluminescence spectra on driving current at negative bias and suppression of negative luminescence from buried InSb/InAs quantum dots were found out in the spectral range 3-4 μm at 300 K. Deposition from the InSb melt over the InAsSb
<sub>0.05</sub>
P
<sub>0.10</sub>
capping layer resulted in the formation of InSb quantum rings with outer and inner diameters about 20-30 nm and 15-18 nm respectively. Surface density of the quantum rings of 2.6× 10
<sup>10</sup>
cm
<sup>-2</sup>
was reached at 430 °C.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7224</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>InSb quantum dots and quantum rings in a narrow-gap InAsSbP matrix</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Quantum dots, particles, and nanoclusters VI : 25-28 January 2009, San Jose, California, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>MOISEEV (K. D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MIKHAILOVA (M. P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PARKHOMENKO (Ya. A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GUSHCHINA (E. V.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KIZHAEV (S. S.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>IVANOV (E. V.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BERT (N. A.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>YAKOVLEV (Yu. P.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>EYINK (Kurt Gerard)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SZMULOWICZ (Frank)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>HUFFAKER (Diana Lynne)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>A.F. Ioffe Physico-Technical Institute, RAS, 26 Politekhnicheskaya</s1>
<s2>St. Petersburg, 194021</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>72240B.1-72240B.9</s2>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-7470-4</s0>
</fA26>
<fA26 i1="02">
<s0>0-8194-7470-3</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000172953050060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0317158</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report a study of InSb quantum dots and quantum rings grown on InAs(100) substrate by LPE-MOVPE combine method. Characterization of InSb/InAs(Sb,P) quantum dots was performed using atomic force microscopy and transmission electron microscopy. The bimodal growth of uncapped InSb quantum dots was observed in the temperature range T=420-450 °C. The low-density (5×10
<sup>8</sup>
cm
<sup>-2</sup>
) large quantum dots with dimensions of 12-14 nm in height and 45-50 nm in diameter are appeared at 445 °C, whereas high-density (1×10
<sup>10</sup>
cm
<sup>-2</sup>
) dislocation-free small quantum dots with dimensions of 3-5 nm in height and 11-13 nm in diameter were obtained at 430 °C. Capping of the InSb quantum dots by binary InAs or InAsSbP epilayers lattice-matched with InAs substrate was performed using MOVPE method. Tunnel-related behavior in a forward curve of I-V characteristics was observed in heterostructures with buried InSb quantum dots inserted in InAs p-n junction. Evolution of electroluminescence spectra on driving current at negative bias and suppression of negative luminescence from buried InSb/InAs quantum dots were found out in the spectral range 3-4 μm at 300 K. Deposition from the InSb melt over the InAsSb
<sub>0.05</sub>
P
<sub>0.10</sub>
capping layer resulted in the formation of InSb quantum rings with outer and inner diameters about 20-30 nm and 15-18 nm respectively. Surface density of the quantum rings of 2.6× 10
<sup>10</sup>
cm
<sup>-2</sup>
was reached at 430 °C.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00G79L</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Electroluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Electroluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Luminescence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Luminescence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Epitaxie phase liquide</s0>
<s5>30</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>LPE</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>31</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>32</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>32</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>41</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>IV characteristic</s0>
<s5>41</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Dislocation</s0>
<s5>42</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Dislocations</s0>
<s5>42</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Accommodation réseau</s0>
<s5>43</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Mismatch lattice</s0>
<s5>43</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Acomodación red</s0>
<s5>43</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Effet tunnel</s0>
<s5>44</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Tunnel effect</s0>
<s5>44</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>47</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>48</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>48</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>52</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>52</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>61</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>61</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>61</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Jonction p n</s0>
<s5>62</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>p n junctions</s0>
<s5>62</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>63</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>63</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
<s5>64</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>VPE</s0>
<s5>64</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Antimoniure d'indium</s0>
<s2>NK</s2>
<s5>65</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Indium antimonides</s0>
<s2>NK</s2>
<s5>65</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Anneau quantique</s0>
<s5>66</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Quantum ring</s0>
<s5>66</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Anillo cuántico</s0>
<s5>66</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Semiconducteur bande interdite étroite</s0>
<s5>67</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Narrow band gap semiconductors</s0>
<s5>67</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>68</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>68</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Antimoine</s0>
<s2>NC</s2>
<s5>69</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Antimony</s0>
<s2>NC</s2>
<s5>69</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>InSb</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>InAsSbP</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Substrat InAs</s0>
<s4>INC</s4>
<s5>87</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>0779L</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fN21>
<s1>229</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Quantum dots, particles, and nanoclusters</s1>
<s2>6</s2>
<s3>San Jose CA USA</s3>
<s4>2009</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000151 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000151 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:09-0317158
   |texte=   InSb quantum dots and quantum rings in a narrow-gap InAsSbP matrix
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024