Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand

Identifieur interne : 009988 ( Main/Exploration ); précédent : 009987; suivant : 009989

Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand

Auteurs : Frédéric Herman [Australie, États-Unis] ; Jean Braun [Australie, France]

Source :

RBID : ISTEX:C34D1896CF97848336E7A04DA33F235D5B7E688F

Descripteurs français

English descriptors

Abstract

It has been postulated that a steady state between erosional and tectonic processes may develop in continental collision. However, it is not clear whether steady state conditions can be reached for all components of the landscape. Here we show, using landscape evolution models and field evidence, that a true geomorphic steady state may never be reached in the Southern Alps of New Zealand. The strong asymmetries in tectonic uplift and tectonic advection and the onset of glaciations constantly interact to prevent the landscape from reaching a topographic steady state. Evidence suggests that the first‐order geomorphology on the western side of the Southern Alps is controlled by orographic precipitation combined with extreme rates of tectonic uplift, whereas the development of deep glacial valleys on the eastern side is initiated by differential uplift along large faults. We also develop a first‐order equation, governing the dynamics of the Main Divide, to show that both tectonic advection and fluvial erosion efficiency control the position and the height of the main drainage divide. Using a two‐dimensional landscape evolution model, we demonstrate that the transition from glacial to fluvial conditions at the end of the last glaciation led to substantial modifications of the landscape: While the main trunk channels get slowly uplifted, ridges are leveled down, causing the relief to decrease. Hillslopes appear to be affected by fluvial processes which seem to be driven by incision of river tributaries. This reduction of relief will probably never reach a steady state since warmer interglacial periods are substantially shorter than glacial periods.

Url:
DOI: 10.1029/2004JF000248


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand</title>
<author>
<name sortKey="Herman, Frederic" sort="Herman, Frederic" uniqKey="Herman F" first="Frédéric" last="Herman">Frédéric Herman</name>
</author>
<author>
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C34D1896CF97848336E7A04DA33F235D5B7E688F</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1029/2004JF000248</idno>
<idno type="url">https://api.istex.fr/document/C34D1896CF97848336E7A04DA33F235D5B7E688F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002430</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002430</idno>
<idno type="wicri:Area/Istex/Curation">002430</idno>
<idno type="wicri:Area/Istex/Checkpoint">001640</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001640</idno>
<idno type="wicri:doubleKey">0148-0227:2006:Herman F:fluvial:response:to</idno>
<idno type="wicri:Area/Main/Merge">00A451</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:06-0245028</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">004414</idno>
<idno type="wicri:Area/PascalFrancis/Curation">001C81</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">004021</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">004021</idno>
<idno type="wicri:doubleKey">0148-0227:2006:Herman F:fluvial:response:to</idno>
<idno type="wicri:Area/Main/Merge">00AA43</idno>
<idno type="wicri:Area/Main/Curation">009988</idno>
<idno type="wicri:Area/Main/Exploration">009988</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand</title>
<author>
<name sortKey="Herman, Frederic" sort="Herman, Frederic" uniqKey="Herman F" first="Frédéric" last="Herman">Frédéric Herman</name>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Earth Sciences, Australian National University, Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Now at California Institute of Technology, Pasadena, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Earth Sciences, Australian National University, Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">France</country>
<wicri:regionArea>Now at Géosciences Rennes, Université de Rennes 1, Rennes</wicri:regionArea>
<placeName>
<region type="region">Région Bretagne</region>
<region type="old region">Région Bretagne</region>
<settlement type="city">Rennes</settlement>
<settlement type="city">Rennes</settlement>
</placeName>
<orgName type="university">Université de Rennes 1</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Earth Surface</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: EARTH SURFACE</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">111</biblScope>
<biblScope unit="issue">F1</biblScope>
<biblScope unit="page-count">23</biblScope>
<date type="published" when="2006-03">2006-03</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active mountain belts</term>
<term>Advected</term>
<term>Advection</term>
<term>Advection term</term>
<term>Alpine</term>
<term>Alpine fault</term>
<term>Alps</term>
<term>Asymmetry</term>
<term>Base level</term>
<term>Batt</term>
<term>Beaumont</term>
<term>Beavan</term>
<term>Bedrock</term>
<term>Bedrock incision</term>
<term>Braun</term>
<term>Cascade</term>
<term>Central part</term>
<term>Compressional orogens</term>
<term>Continental collision</term>
<term>Convergence</term>
<term>Convergence velocity</term>
<term>Craw</term>
<term>Critical slope</term>
<term>Crustal</term>
<term>Crustal deformation</term>
<term>Different values</term>
<term>Digital elevation model</term>
<term>Drainage area</term>
<term>Drainage basins</term>
<term>Eastern side</term>
<term>Equilibrium position</term>
<term>Erosion</term>
<term>Erosion rate</term>
<term>Erosional</term>
<term>First order</term>
<term>First order equation</term>
<term>Fluvial</term>
<term>Fluvial conditions</term>
<term>Fluvial efficiency</term>
<term>Fluvial erosion</term>
<term>Fluvial incision</term>
<term>Fluvial processes</term>
<term>Fluvial response</term>
<term>Geol</term>
<term>Geomorphic</term>
<term>Geomorphology</term>
<term>Geophys</term>
<term>Glacial</term>
<term>Glacial debris</term>
<term>Glacial erosion</term>
<term>Glacial periods</term>
<term>Glaciated</term>
<term>Glaciation</term>
<term>Grid</term>
<term>Height</term>
<term>Hillslope</term>
<term>Hillslope diffusion</term>
<term>Hillslope erosion</term>
<term>Hillslope processes</term>
<term>Horizontal advection</term>
<term>Hovius</term>
<term>Incision</term>
<term>Koons</term>
<term>Landform</term>
<term>Landform evolution</term>
<term>Landscape evolution</term>
<term>Landscape evolution model</term>
<term>Landsliding</term>
<term>Large number</term>
<term>Last glaciation</term>
<term>Main drainage</term>
<term>Maximum slope</term>
<term>Misfit</term>
<term>Misfit function</term>
<term>Misfit value</term>
<term>Mountain belt</term>
<term>Mountain range</term>
<term>Mountain ranges</term>
<term>New Zealand Southern Alps</term>
<term>Numerical experiments</term>
<term>Numerical models</term>
<term>Oblique</term>
<term>Orogen</term>
<term>Orogens</term>
<term>Orographic</term>
<term>Orographic precipitation</term>
<term>Parameter space</term>
<term>Personal communication</term>
<term>Position</term>
<term>Precipitation</term>
<term>Proside</term>
<term>Relief production</term>
<term>Retroside</term>
<term>River profile</term>
<term>River tributaries</term>
<term>Rock uplift</term>
<term>Run1</term>
<term>Run2</term>
<term>Sambridge</term>
<term>Satellite image</term>
<term>Seismic</term>
<term>Seismic strain rate</term>
<term>Southern alps</term>
<term>Southern alps figure</term>
<term>Steady state</term>
<term>Steady state conditions</term>
<term>Surface topography</term>
<term>Tectonic</term>
<term>Tectonic advection</term>
<term>Tectonic model</term>
<term>Tectonic uplift</term>
<term>Tectonics</term>
<term>Tectonomorphic model</term>
<term>Thermochronological data</term>
<term>Time step</term>
<term>Topographic</term>
<term>Topographic balance</term>
<term>Topography</term>
<term>Tributary</term>
<term>Uplift</term>
<term>Uplift rate</term>
<term>Valley floor</term>
<term>Various processes</term>
<term>Velocity field</term>
<term>Western flank</term>
<term>Western side</term>
<term>Whataroa</term>
<term>Whataroa river</term>
<term>Whitehouse</term>
<term>Willett</term>
<term>Zealand</term>
<term>advection</term>
<term>asymmetry</term>
<term>atmospheric precipitation</term>
<term>channels</term>
<term>drainage divide</term>
<term>dynamics</term>
<term>efficiency</term>
<term>extreme value</term>
<term>faults</term>
<term>fluvial erosion</term>
<term>geomorphology</term>
<term>glaciation</term>
<term>interglacial periods</term>
<term>landscapes</term>
<term>models</term>
<term>relief</term>
<term>rivers</term>
<term>tectonics</term>
<term>tributaries</term>
<term>uplifts</term>
<term>valleys</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Advection</term>
<term>Affluent</term>
<term>Alpes Australes Nouvelle Zélande Ile Sud</term>
<term>Asymétrie</term>
<term>Chenal</term>
<term>Dynamique</term>
<term>Efficacité</term>
<term>Equation ordre 1</term>
<term>Erosion fluviatile</term>
<term>Faille</term>
<term>Glaciation</term>
<term>Géomorphologie</term>
<term>Hauteur</term>
<term>Ligne partage eau</term>
<term>Modèle</term>
<term>Ordre 1</term>
<term>Paysage</term>
<term>Position</term>
<term>Précipitation atmosphérique</term>
<term>Période interglaciaire</term>
<term>Relief</term>
<term>Rivière</term>
<term>Surrection</term>
<term>Tectonique</term>
<term>Valeur extrême</term>
<term>Vallée</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Active mountain belts</term>
<term>Advected</term>
<term>Advection</term>
<term>Advection term</term>
<term>Alpine</term>
<term>Alpine fault</term>
<term>Alps</term>
<term>Asymmetry</term>
<term>Base level</term>
<term>Batt</term>
<term>Beaumont</term>
<term>Beavan</term>
<term>Bedrock</term>
<term>Bedrock incision</term>
<term>Braun</term>
<term>Cascade</term>
<term>Central part</term>
<term>Compressional orogens</term>
<term>Continental collision</term>
<term>Convergence</term>
<term>Convergence velocity</term>
<term>Craw</term>
<term>Critical slope</term>
<term>Crustal</term>
<term>Crustal deformation</term>
<term>Different values</term>
<term>Digital elevation model</term>
<term>Drainage area</term>
<term>Drainage basins</term>
<term>Eastern side</term>
<term>Equilibrium position</term>
<term>Erosion</term>
<term>Erosion rate</term>
<term>Erosional</term>
<term>Fluvial</term>
<term>Fluvial conditions</term>
<term>Fluvial efficiency</term>
<term>Fluvial erosion</term>
<term>Fluvial incision</term>
<term>Fluvial processes</term>
<term>Fluvial response</term>
<term>Geol</term>
<term>Geomorphic</term>
<term>Geomorphology</term>
<term>Geophys</term>
<term>Glacial</term>
<term>Glacial debris</term>
<term>Glacial erosion</term>
<term>Glacial periods</term>
<term>Glaciated</term>
<term>Glaciation</term>
<term>Grid</term>
<term>Hillslope</term>
<term>Hillslope diffusion</term>
<term>Hillslope erosion</term>
<term>Hillslope processes</term>
<term>Horizontal advection</term>
<term>Hovius</term>
<term>Incision</term>
<term>Koons</term>
<term>Landform</term>
<term>Landform evolution</term>
<term>Landscape evolution</term>
<term>Landscape evolution model</term>
<term>Landsliding</term>
<term>Large number</term>
<term>Last glaciation</term>
<term>Main drainage</term>
<term>Maximum slope</term>
<term>Misfit</term>
<term>Misfit function</term>
<term>Misfit value</term>
<term>Mountain belt</term>
<term>Mountain range</term>
<term>Mountain ranges</term>
<term>Numerical experiments</term>
<term>Numerical models</term>
<term>Oblique</term>
<term>Orogen</term>
<term>Orogens</term>
<term>Orographic</term>
<term>Orographic precipitation</term>
<term>Parameter space</term>
<term>Personal communication</term>
<term>Precipitation</term>
<term>Proside</term>
<term>Relief production</term>
<term>Retroside</term>
<term>River profile</term>
<term>River tributaries</term>
<term>Rock uplift</term>
<term>Run1</term>
<term>Run2</term>
<term>Sambridge</term>
<term>Satellite image</term>
<term>Seismic</term>
<term>Seismic strain rate</term>
<term>Southern alps</term>
<term>Southern alps figure</term>
<term>Steady state</term>
<term>Steady state conditions</term>
<term>Surface topography</term>
<term>Tectonic</term>
<term>Tectonic advection</term>
<term>Tectonic model</term>
<term>Tectonic uplift</term>
<term>Tectonics</term>
<term>Tectonomorphic model</term>
<term>Thermochronological data</term>
<term>Time step</term>
<term>Topographic</term>
<term>Topographic balance</term>
<term>Topography</term>
<term>Tributary</term>
<term>Uplift</term>
<term>Uplift rate</term>
<term>Valley floor</term>
<term>Various processes</term>
<term>Velocity field</term>
<term>Western flank</term>
<term>Western side</term>
<term>Whataroa</term>
<term>Whataroa river</term>
<term>Whitehouse</term>
<term>Willett</term>
<term>Zealand</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Géomorphologie</term>
<term>érosion</term>
<term>Géomorphologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">It has been postulated that a steady state between erosional and tectonic processes may develop in continental collision. However, it is not clear whether steady state conditions can be reached for all components of the landscape. Here we show, using landscape evolution models and field evidence, that a true geomorphic steady state may never be reached in the Southern Alps of New Zealand. The strong asymmetries in tectonic uplift and tectonic advection and the onset of glaciations constantly interact to prevent the landscape from reaching a topographic steady state. Evidence suggests that the first‐order geomorphology on the western side of the Southern Alps is controlled by orographic precipitation combined with extreme rates of tectonic uplift, whereas the development of deep glacial valleys on the eastern side is initiated by differential uplift along large faults. We also develop a first‐order equation, governing the dynamics of the Main Divide, to show that both tectonic advection and fluvial erosion efficiency control the position and the height of the main drainage divide. Using a two‐dimensional landscape evolution model, we demonstrate that the transition from glacial to fluvial conditions at the end of the last glaciation led to substantial modifications of the landscape: While the main trunk channels get slowly uplifted, ridges are leveled down, causing the relief to decrease. Hillslopes appear to be affected by fluvial processes which seem to be driven by incision of river tributaries. This reduction of relief will probably never reach a steady state since warmer interglacial periods are substantially shorter than glacial periods.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>Région Bretagne</li>
</region>
<settlement>
<li>Rennes</li>
</settlement>
<orgName>
<li>Université de Rennes 1</li>
</orgName>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Herman, Frederic" sort="Herman, Frederic" uniqKey="Herman F" first="Frédéric" last="Herman">Frédéric Herman</name>
</noRegion>
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
<name sortKey="Herman, Frederic" sort="Herman, Frederic" uniqKey="Herman F" first="Frédéric" last="Herman">Frédéric Herman</name>
<name sortKey="Herman, Frederic" sort="Herman, Frederic" uniqKey="Herman F" first="Frédéric" last="Herman">Frédéric Herman</name>
</country>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Herman, Frederic" sort="Herman, Frederic" uniqKey="Herman F" first="Frédéric" last="Herman">Frédéric Herman</name>
</region>
</country>
<country name="France">
<region name="Région Bretagne">
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 009988 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 009988 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:C34D1896CF97848336E7A04DA33F235D5B7E688F
   |texte=   Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024