Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand

Identifieur interne : 002430 ( Istex/Corpus ); précédent : 002429; suivant : 002431

Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand

Auteurs : Frédéric Herman ; Jean Braun

Source :

RBID : ISTEX:C34D1896CF97848336E7A04DA33F235D5B7E688F

English descriptors

Abstract

It has been postulated that a steady state between erosional and tectonic processes may develop in continental collision. However, it is not clear whether steady state conditions can be reached for all components of the landscape. Here we show, using landscape evolution models and field evidence, that a true geomorphic steady state may never be reached in the Southern Alps of New Zealand. The strong asymmetries in tectonic uplift and tectonic advection and the onset of glaciations constantly interact to prevent the landscape from reaching a topographic steady state. Evidence suggests that the first‐order geomorphology on the western side of the Southern Alps is controlled by orographic precipitation combined with extreme rates of tectonic uplift, whereas the development of deep glacial valleys on the eastern side is initiated by differential uplift along large faults. We also develop a first‐order equation, governing the dynamics of the Main Divide, to show that both tectonic advection and fluvial erosion efficiency control the position and the height of the main drainage divide. Using a two‐dimensional landscape evolution model, we demonstrate that the transition from glacial to fluvial conditions at the end of the last glaciation led to substantial modifications of the landscape: While the main trunk channels get slowly uplifted, ridges are leveled down, causing the relief to decrease. Hillslopes appear to be affected by fluvial processes which seem to be driven by incision of river tributaries. This reduction of relief will probably never reach a steady state since warmer interglacial periods are substantially shorter than glacial periods.

Url:
DOI: 10.1029/2004JF000248

Links to Exploration step

ISTEX:C34D1896CF97848336E7A04DA33F235D5B7E688F

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand</title>
<author>
<name sortKey="Herman, Frederic" sort="Herman, Frederic" uniqKey="Herman F" first="Frédéric" last="Herman">Frédéric Herman</name>
<affiliation>
<mods:affiliation>E-mail: frederic.herman@anu.edu.au</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at California Institute of Technology, Pasadena, California, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: frederic.herman@anu.edu.au</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
<affiliation>
<mods:affiliation>Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at Géosciences Rennes, Université de Rennes 1, Rennes, France.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C34D1896CF97848336E7A04DA33F235D5B7E688F</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1029/2004JF000248</idno>
<idno type="url">https://api.istex.fr/document/C34D1896CF97848336E7A04DA33F235D5B7E688F/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002430</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002430</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand</title>
<author>
<name sortKey="Herman, Frederic" sort="Herman, Frederic" uniqKey="Herman F" first="Frédéric" last="Herman">Frédéric Herman</name>
<affiliation>
<mods:affiliation>E-mail: frederic.herman@anu.edu.au</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at California Institute of Technology, Pasadena, California, USA.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: frederic.herman@anu.edu.au</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
<affiliation>
<mods:affiliation>Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Now at Géosciences Rennes, Université de Rennes 1, Rennes, France.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Earth Surface</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: EARTH SURFACE</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">111</biblScope>
<biblScope unit="issue">F1</biblScope>
<biblScope unit="page-count">23</biblScope>
<date type="published" when="2006-03">2006-03</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active mountain belts</term>
<term>Advected</term>
<term>Advection</term>
<term>Advection term</term>
<term>Alpine</term>
<term>Alpine fault</term>
<term>Alps</term>
<term>Asymmetry</term>
<term>Base level</term>
<term>Batt</term>
<term>Beaumont</term>
<term>Beavan</term>
<term>Bedrock</term>
<term>Bedrock incision</term>
<term>Braun</term>
<term>Cascade</term>
<term>Central part</term>
<term>Compressional orogens</term>
<term>Continental collision</term>
<term>Convergence</term>
<term>Convergence velocity</term>
<term>Craw</term>
<term>Critical slope</term>
<term>Crustal</term>
<term>Crustal deformation</term>
<term>Different values</term>
<term>Digital elevation model</term>
<term>Drainage area</term>
<term>Drainage basins</term>
<term>Eastern side</term>
<term>Equilibrium position</term>
<term>Erosion</term>
<term>Erosion rate</term>
<term>Erosional</term>
<term>Fluvial</term>
<term>Fluvial conditions</term>
<term>Fluvial efficiency</term>
<term>Fluvial erosion</term>
<term>Fluvial incision</term>
<term>Fluvial processes</term>
<term>Fluvial response</term>
<term>Geol</term>
<term>Geomorphic</term>
<term>Geomorphology</term>
<term>Geophys</term>
<term>Glacial</term>
<term>Glacial debris</term>
<term>Glacial erosion</term>
<term>Glacial periods</term>
<term>Glaciated</term>
<term>Glaciation</term>
<term>Grid</term>
<term>Hillslope</term>
<term>Hillslope diffusion</term>
<term>Hillslope erosion</term>
<term>Hillslope processes</term>
<term>Horizontal advection</term>
<term>Hovius</term>
<term>Incision</term>
<term>Koons</term>
<term>Landform</term>
<term>Landform evolution</term>
<term>Landscape evolution</term>
<term>Landscape evolution model</term>
<term>Landsliding</term>
<term>Large number</term>
<term>Last glaciation</term>
<term>Main drainage</term>
<term>Maximum slope</term>
<term>Misfit</term>
<term>Misfit function</term>
<term>Misfit value</term>
<term>Mountain belt</term>
<term>Mountain range</term>
<term>Mountain ranges</term>
<term>Numerical experiments</term>
<term>Numerical models</term>
<term>Oblique</term>
<term>Orogen</term>
<term>Orogens</term>
<term>Orographic</term>
<term>Orographic precipitation</term>
<term>Parameter space</term>
<term>Personal communication</term>
<term>Precipitation</term>
<term>Proside</term>
<term>Relief production</term>
<term>Retroside</term>
<term>River profile</term>
<term>River tributaries</term>
<term>Rock uplift</term>
<term>Run1</term>
<term>Run2</term>
<term>Sambridge</term>
<term>Satellite image</term>
<term>Seismic</term>
<term>Seismic strain rate</term>
<term>Southern alps</term>
<term>Southern alps figure</term>
<term>Steady state</term>
<term>Steady state conditions</term>
<term>Surface topography</term>
<term>Tectonic</term>
<term>Tectonic advection</term>
<term>Tectonic model</term>
<term>Tectonic uplift</term>
<term>Tectonics</term>
<term>Tectonomorphic model</term>
<term>Thermochronological data</term>
<term>Time step</term>
<term>Topographic</term>
<term>Topographic balance</term>
<term>Topography</term>
<term>Tributary</term>
<term>Uplift</term>
<term>Uplift rate</term>
<term>Valley floor</term>
<term>Various processes</term>
<term>Velocity field</term>
<term>Western flank</term>
<term>Western side</term>
<term>Whataroa</term>
<term>Whataroa river</term>
<term>Whitehouse</term>
<term>Willett</term>
<term>Zealand</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Active mountain belts</term>
<term>Advected</term>
<term>Advection</term>
<term>Advection term</term>
<term>Alpine</term>
<term>Alpine fault</term>
<term>Alps</term>
<term>Asymmetry</term>
<term>Base level</term>
<term>Batt</term>
<term>Beaumont</term>
<term>Beavan</term>
<term>Bedrock</term>
<term>Bedrock incision</term>
<term>Braun</term>
<term>Cascade</term>
<term>Central part</term>
<term>Compressional orogens</term>
<term>Continental collision</term>
<term>Convergence</term>
<term>Convergence velocity</term>
<term>Craw</term>
<term>Critical slope</term>
<term>Crustal</term>
<term>Crustal deformation</term>
<term>Different values</term>
<term>Digital elevation model</term>
<term>Drainage area</term>
<term>Drainage basins</term>
<term>Eastern side</term>
<term>Equilibrium position</term>
<term>Erosion</term>
<term>Erosion rate</term>
<term>Erosional</term>
<term>Fluvial</term>
<term>Fluvial conditions</term>
<term>Fluvial efficiency</term>
<term>Fluvial erosion</term>
<term>Fluvial incision</term>
<term>Fluvial processes</term>
<term>Fluvial response</term>
<term>Geol</term>
<term>Geomorphic</term>
<term>Geomorphology</term>
<term>Geophys</term>
<term>Glacial</term>
<term>Glacial debris</term>
<term>Glacial erosion</term>
<term>Glacial periods</term>
<term>Glaciated</term>
<term>Glaciation</term>
<term>Grid</term>
<term>Hillslope</term>
<term>Hillslope diffusion</term>
<term>Hillslope erosion</term>
<term>Hillslope processes</term>
<term>Horizontal advection</term>
<term>Hovius</term>
<term>Incision</term>
<term>Koons</term>
<term>Landform</term>
<term>Landform evolution</term>
<term>Landscape evolution</term>
<term>Landscape evolution model</term>
<term>Landsliding</term>
<term>Large number</term>
<term>Last glaciation</term>
<term>Main drainage</term>
<term>Maximum slope</term>
<term>Misfit</term>
<term>Misfit function</term>
<term>Misfit value</term>
<term>Mountain belt</term>
<term>Mountain range</term>
<term>Mountain ranges</term>
<term>Numerical experiments</term>
<term>Numerical models</term>
<term>Oblique</term>
<term>Orogen</term>
<term>Orogens</term>
<term>Orographic</term>
<term>Orographic precipitation</term>
<term>Parameter space</term>
<term>Personal communication</term>
<term>Precipitation</term>
<term>Proside</term>
<term>Relief production</term>
<term>Retroside</term>
<term>River profile</term>
<term>River tributaries</term>
<term>Rock uplift</term>
<term>Run1</term>
<term>Run2</term>
<term>Sambridge</term>
<term>Satellite image</term>
<term>Seismic</term>
<term>Seismic strain rate</term>
<term>Southern alps</term>
<term>Southern alps figure</term>
<term>Steady state</term>
<term>Steady state conditions</term>
<term>Surface topography</term>
<term>Tectonic</term>
<term>Tectonic advection</term>
<term>Tectonic model</term>
<term>Tectonic uplift</term>
<term>Tectonics</term>
<term>Tectonomorphic model</term>
<term>Thermochronological data</term>
<term>Time step</term>
<term>Topographic</term>
<term>Topographic balance</term>
<term>Topography</term>
<term>Tributary</term>
<term>Uplift</term>
<term>Uplift rate</term>
<term>Valley floor</term>
<term>Various processes</term>
<term>Velocity field</term>
<term>Western flank</term>
<term>Western side</term>
<term>Whataroa</term>
<term>Whataroa river</term>
<term>Whitehouse</term>
<term>Willett</term>
<term>Zealand</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">It has been postulated that a steady state between erosional and tectonic processes may develop in continental collision. However, it is not clear whether steady state conditions can be reached for all components of the landscape. Here we show, using landscape evolution models and field evidence, that a true geomorphic steady state may never be reached in the Southern Alps of New Zealand. The strong asymmetries in tectonic uplift and tectonic advection and the onset of glaciations constantly interact to prevent the landscape from reaching a topographic steady state. Evidence suggests that the first‐order geomorphology on the western side of the Southern Alps is controlled by orographic precipitation combined with extreme rates of tectonic uplift, whereas the development of deep glacial valleys on the eastern side is initiated by differential uplift along large faults. We also develop a first‐order equation, governing the dynamics of the Main Divide, to show that both tectonic advection and fluvial erosion efficiency control the position and the height of the main drainage divide. Using a two‐dimensional landscape evolution model, we demonstrate that the transition from glacial to fluvial conditions at the end of the last glaciation led to substantial modifications of the landscape: While the main trunk channels get slowly uplifted, ridges are leveled down, causing the relief to decrease. Hillslopes appear to be affected by fluvial processes which seem to be driven by incision of river tributaries. This reduction of relief will probably never reach a steady state since warmer interglacial periods are substantially shorter than glacial periods.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>fluvial</json:string>
<json:string>southern alps</json:string>
<json:string>tectonic</json:string>
<json:string>orogen</json:string>
<json:string>glacial</json:string>
<json:string>alpine</json:string>
<json:string>alpine fault</json:string>
<json:string>advection</json:string>
<json:string>incision</json:string>
<json:string>geophys</json:string>
<json:string>fluvial response</json:string>
<json:string>precipitation</json:string>
<json:string>braun</json:string>
<json:string>uplift</json:string>
<json:string>misfit</json:string>
<json:string>eastern side</json:string>
<json:string>hillslope</json:string>
<json:string>western side</json:string>
<json:string>bedrock</json:string>
<json:string>alps</json:string>
<json:string>convergence</json:string>
<json:string>landform</json:string>
<json:string>glaciation</json:string>
<json:string>steady state</json:string>
<json:string>crustal</json:string>
<json:string>whataroa</json:string>
<json:string>tectonic uplift</json:string>
<json:string>tectonics</json:string>
<json:string>batt</json:string>
<json:string>geomorphic</json:string>
<json:string>geol</json:string>
<json:string>landsliding</json:string>
<json:string>koons</json:string>
<json:string>misfit function</json:string>
<json:string>proside</json:string>
<json:string>erosional</json:string>
<json:string>willett</json:string>
<json:string>orographic</json:string>
<json:string>parameter space</json:string>
<json:string>advection term</json:string>
<json:string>craw</json:string>
<json:string>advected</json:string>
<json:string>bedrock incision</json:string>
<json:string>glaciated</json:string>
<json:string>glacial erosion</json:string>
<json:string>beavan</json:string>
<json:string>fluvial erosion</json:string>
<json:string>sambridge</json:string>
<json:string>tributary</json:string>
<json:string>geomorphology</json:string>
<json:string>topographic</json:string>
<json:string>retroside</json:string>
<json:string>orogens</json:string>
<json:string>hovius</json:string>
<json:string>run2</json:string>
<json:string>run1</json:string>
<json:string>grid</json:string>
<json:string>seismic</json:string>
<json:string>whitehouse</json:string>
<json:string>main drainage</json:string>
<json:string>continental collision</json:string>
<json:string>zealand</json:string>
<json:string>cascade</json:string>
<json:string>erosion</json:string>
<json:string>topographic balance</json:string>
<json:string>critical slope</json:string>
<json:string>whataroa river</json:string>
<json:string>drainage basins</json:string>
<json:string>horizontal advection</json:string>
<json:string>digital elevation model</json:string>
<json:string>mountain belt</json:string>
<json:string>misfit value</json:string>
<json:string>drainage area</json:string>
<json:string>landscape evolution</json:string>
<json:string>erosion rate</json:string>
<json:string>landscape evolution model</json:string>
<json:string>hillslope erosion</json:string>
<json:string>maximum slope</json:string>
<json:string>last glaciation</json:string>
<json:string>seismic strain rate</json:string>
<json:string>mountain range</json:string>
<json:string>fluvial processes</json:string>
<json:string>central part</json:string>
<json:string>relief production</json:string>
<json:string>tectonic model</json:string>
<json:string>glacial periods</json:string>
<json:string>compressional orogens</json:string>
<json:string>equilibrium position</json:string>
<json:string>fluvial efficiency</json:string>
<json:string>rock uplift</json:string>
<json:string>asymmetry</json:string>
<json:string>oblique</json:string>
<json:string>tectonomorphic model</json:string>
<json:string>glacial debris</json:string>
<json:string>southern alps figure</json:string>
<json:string>uplift rate</json:string>
<json:string>orographic precipitation</json:string>
<json:string>hillslope processes</json:string>
<json:string>western flank</json:string>
<json:string>fluvial conditions</json:string>
<json:string>large number</json:string>
<json:string>various processes</json:string>
<json:string>velocity field</json:string>
<json:string>thermochronological data</json:string>
<json:string>time step</json:string>
<json:string>tectonic advection</json:string>
<json:string>numerical experiments</json:string>
<json:string>different values</json:string>
<json:string>convergence velocity</json:string>
<json:string>personal communication</json:string>
<json:string>surface topography</json:string>
<json:string>river tributaries</json:string>
<json:string>satellite image</json:string>
<json:string>valley floor</json:string>
<json:string>steady state conditions</json:string>
<json:string>river profile</json:string>
<json:string>numerical models</json:string>
<json:string>active mountain belts</json:string>
<json:string>landform evolution</json:string>
<json:string>fluvial incision</json:string>
<json:string>hillslope diffusion</json:string>
<json:string>base level</json:string>
<json:string>mountain ranges</json:string>
<json:string>crustal deformation</json:string>
<json:string>beaumont</json:string>
<json:string>topography</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Frédéric Herman</name>
<affiliations>
<json:string>E-mail: frederic.herman@anu.edu.au</json:string>
<json:string>Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia</json:string>
<json:string>Now at California Institute of Technology, Pasadena, California, USA.</json:string>
<json:string>E-mail: frederic.herman@anu.edu.au</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jean Braun</name>
<affiliations>
<json:string>Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia</json:string>
<json:string>Now at Géosciences Rennes, Université de Rennes 1, Rennes, France.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>geomorphology</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>landscape evolution</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>numerical models</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>continental collision</value>
</json:item>
</subject>
<articleId>
<json:string>2004JF000248</json:string>
</articleId>
<arkIstex>ark:/67375/WNG-8R3M6CVX-Z</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>It has been postulated that a steady state between erosional and tectonic processes may develop in continental collision. However, it is not clear whether steady state conditions can be reached for all components of the landscape. Here we show, using landscape evolution models and field evidence, that a true geomorphic steady state may never be reached in the Southern Alps of New Zealand. The strong asymmetries in tectonic uplift and tectonic advection and the onset of glaciations constantly interact to prevent the landscape from reaching a topographic steady state. Evidence suggests that the first‐order geomorphology on the western side of the Southern Alps is controlled by orographic precipitation combined with extreme rates of tectonic uplift, whereas the development of deep glacial valleys on the eastern side is initiated by differential uplift along large faults. We also develop a first‐order equation, governing the dynamics of the Main Divide, to show that both tectonic advection and fluvial erosion efficiency control the position and the height of the main drainage divide. Using a two‐dimensional landscape evolution model, we demonstrate that the transition from glacial to fluvial conditions at the end of the last glaciation led to substantial modifications of the landscape: While the main trunk channels get slowly uplifted, ridges are leveled down, causing the relief to decrease. Hillslopes appear to be affected by fluvial processes which seem to be driven by incision of river tributaries. This reduction of relief will probably never reach a steady state since warmer interglacial periods are substantially shorter than glacial periods.</abstract>
<qualityIndicators>
<score>10</score>
<pdfWordCount>13012</pdfWordCount>
<pdfCharCount>75992</pdfCharCount>
<pdfVersion>1.3</pdfVersion>
<pdfPageCount>23</pdfPageCount>
<pdfPageSize>592 x 807 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractWordCount>254</abstractWordCount>
<abstractCharCount>1670</abstractCharCount>
<keywordCount>4</keywordCount>
</qualityIndicators>
<title>Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Journal of Geophysical Research: Earth Surface</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)2156-2202f</json:string>
</doi>
<issn>
<json:string>0148-0227</json:string>
</issn>
<eissn>
<json:string>2156-2202</json:string>
</eissn>
<publisherId>
<json:string>JGRF</json:string>
</publisherId>
<volume>111</volume>
<issue>F1</issue>
<pages>
<first>n/a</first>
<last>n/a</last>
<total>23</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Hydrology</value>
</json:item>
<json:item>
<value>Hydrology: Geomorphology: general</value>
</json:item>
<json:item>
<value>Planetary Sciences: Solid Surface Planets</value>
</json:item>
<json:item>
<value>Planetary Sciences: Solid Surface Planets: Glaciation</value>
</json:item>
<json:item>
<value>Planetary Sciences: Solid Surface Planets: Tectonics</value>
</json:item>
<json:item>
<value>Tectonophysics</value>
</json:item>
<json:item>
<value>Tectonophysics: Continental contractional orogenic belts and inversion tectonics</value>
</json:item>
</subject>
</host>
<namedEntities>
<unitex>
<date>
<json:string>one thousand</json:string>
<json:string>2006</json:string>
</date>
<geogName>
<json:string>Whataroa</json:string>
<json:string>Perth River</json:string>
<json:string>Whataroa region</json:string>
<json:string>Whataroa River</json:string>
<json:string>Harirari River</json:string>
<json:string>Ohau</json:string>
</geogName>
<orgName>
<json:string>Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia</json:string>
<json:string>New Zealand Frederic Herman</json:string>
<json:string>Research School of Earth Sciences, Australian National University</json:string>
<json:string>Taiwan, and the Southern Alps of New Zealand</json:string>
<json:string>IGNS</json:string>
<json:string>American Geophysical Union</json:string>
<json:string>Institute of Geological and Nuclear Sciences</json:string>
<json:string>California Institute of Technology, Pasadena, California, USA</json:string>
</orgName>
<orgName_funder></orgName_funder>
<orgName_provider></orgName_provider>
<persName>
<json:string>Derek Fabel</json:string>
<json:string>Fox Glacier</json:string>
<json:string>J. Geophys</json:string>
<json:string>Whitehouse</json:string>
<json:string>Alps</json:string>
<json:string>S. Cox</json:string>
<json:string>Inference</json:string>
<json:string>Jean Braun</json:string>
<json:string>Steven Micklethwaite</json:string>
<json:string>Simon Brocklehurst</json:string>
<json:string>J. Braun</json:string>
<json:string>Evidence</json:string>
<json:string>Now</json:string>
<json:string>Robert Anderson</json:string>
<json:string>Tim Barrows</json:string>
<json:string>T. Stern</json:string>
<json:string>Andrew Meigs</json:string>
</persName>
<placeName>
<json:string>Alps</json:string>
<json:string>Rennes</json:string>
<json:string>Perth</json:string>
<json:string>New Zealand</json:string>
<json:string>France</json:string>
<json:string>Landsborough</json:string>
</placeName>
<ref_url></ref_url>
<ref_bibl>
<json:string>Braun et al., 1994</json:string>
<json:string>Hovius et al., 2000</json:string>
<json:string>Kamp and Tippett, 1993</json:string>
<json:string>Braun and Sambridge, 1997</json:string>
<json:string>Beaumont et al., 2001</json:string>
<json:string>F. Herman et al.</json:string>
<json:string>Griffiths and McSaveney, 1983</json:string>
<json:string>Norris et al., 1990</json:string>
<json:string>[1997]</json:string>
<json:string>Willett et al., 2001</json:string>
<json:string>Willett et al. [2001]</json:string>
<json:string>Whipple and Tucker, 1999</json:string>
<json:string>Brocklehurst and Whipple, 2002</json:string>
<json:string>Beaumont et al.</json:string>
<json:string>Willett et al., 1993</json:string>
<json:string>Barrows et al., 2000</json:string>
<json:string>Davey et al., 1995</json:string>
<json:string>[1992]</json:string>
<json:string>Gutenberg and Richter, 1944</json:string>
<json:string>Whipple et al., 1999</json:string>
<json:string>[55]</json:string>
<json:string>Avouac and Burov, 1996</json:string>
<json:string>Batt and Braun, 1997, 1999</json:string>
<json:string>Willett et al. [1993]</json:string>
<json:string>Batt and Braun, 1999</json:string>
<json:string>MacGregor et al. [2000]</json:string>
<json:string>Beaumont et al., 1992</json:string>
<json:string>[28]</json:string>
<json:string>Davis et al., 1983</json:string>
<json:string>Craw et al. [2004]</json:string>
<json:string>Molnar and England, 1990</json:string>
<json:string>[43]</json:string>
<json:string>Schlunegger and Hinderer, 2001</json:string>
<json:string>Beavan et al., 2002</json:string>
<json:string>Cox and Findley, 1995</json:string>
<json:string>Craw et al., 1994</json:string>
<json:string>[1980]</json:string>
<json:string>Roering et al., 2000</json:string>
<json:string>[16]</json:string>
<json:string>Molnar and Taponnier, 1975</json:string>
<json:string>Beaumont et al., 2004</json:string>
<json:string>Norris and Cooper, 2000</json:string>
<json:string>Koons et al. [2002]</json:string>
<json:string>Willett and Brandon, 2002</json:string>
<json:string>Wobus et al., 2003</json:string>
<json:string>[31]</json:string>
<json:string>Herman et al.</json:string>
<json:string>Schmidt and Montgomery, 1995</json:string>
<json:string>Zeitler et al., 2001</json:string>
<json:string>Lague et al. [2003]</json:string>
<json:string>[26]</json:string>
<json:string>Beavan et al. [2002]</json:string>
<json:string>Batt et al., 2000</json:string>
<json:string>[1990]</json:string>
<json:string>Braun et al. [2001]</json:string>
<json:string>[1999]</json:string>
<json:string>[30]</json:string>
<json:string>Raymo and Ruddiman, 1992</json:string>
<json:string>[7]</json:string>
<json:string>Herman and Braun, 2006</json:string>
<json:string>A. Sitaula et al., 2004</json:string>
<json:string>Braun and Beaumont, 1995</json:string>
<json:string>[1994]</json:string>
<json:string>[2000]</json:string>
<json:string>Hovius et al. [1997]</json:string>
<json:string>Brozovic et al., 1997</json:string>
<json:string>Beaumont et al., 1996b</json:string>
<json:string>[1987]</json:string>
<json:string>Whipple et al. [1999]</json:string>
<json:string>[2]</json:string>
<json:string>[24]</json:string>
<json:string>Beaumont et al., 1994</json:string>
<json:string>Koons et al., 2002</json:string>
<json:string>Craw et al., 2004</json:string>
<json:string>Densmore et al., 1998</json:string>
</ref_bibl>
<bibl></bibl>
</unitex>
</namedEntities>
<ark>
<json:string>ark:/67375/WNG-8R3M6CVX-Z</json:string>
</ark>
<categories>
<wos>
<json:string>1 - science</json:string>
<json:string>2 - geosciences, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>1 - natural sciences</json:string>
<json:string>2 - earth & environmental sciences</json:string>
<json:string>3 - meteorology & atmospheric sciences</json:string>
</scienceMetrix>
<scopus>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Palaeontology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Space and Planetary Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Earth and Planetary Sciences (miscellaneous)</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Atmospheric Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Earth-Surface Processes</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geochemistry and Petrology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Soil Science</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Water Science and Technology</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Environmental Science</json:string>
<json:string>3 - Ecology</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Aquatic Science</json:string>
<json:string>1 - Life Sciences</json:string>
<json:string>2 - Agricultural and Biological Sciences</json:string>
<json:string>3 - Forestry</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Oceanography</json:string>
<json:string>1 - Physical Sciences</json:string>
<json:string>2 - Earth and Planetary Sciences</json:string>
<json:string>3 - Geophysics</json:string>
</scopus>
</categories>
<publicationDate>2006</publicationDate>
<copyrightDate>2006</copyrightDate>
<doi>
<json:string>10.1029/2004JF000248</json:string>
</doi>
<id>C34D1896CF97848336E7A04DA33F235D5B7E688F</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/C34D1896CF97848336E7A04DA33F235D5B7E688F/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/C34D1896CF97848336E7A04DA33F235D5B7E688F/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/C34D1896CF97848336E7A04DA33F235D5B7E688F/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Publishing Ltd</publisher>
<availability>
<licence>Copyright 2006 by the American Geophysical Union.</licence>
</availability>
<date type="published" when="2006-03"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand</title>
<title level="a" type="short">FLUVIAL RESPONSE IN SOUTHERN ALPS</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Frédéric</forename>
<surname>Herman</surname>
</persName>
<email>frederic.herman@anu.edu.au</email>
<affiliation>
<orgName>Research School of Earth Sciences</orgName>
<orgName>Australian National University</orgName>
<address>
<settlement type="city">Canberra, ACT</settlement>
<country key="AU">Australia</country>
</address>
</affiliation>
<affiliation>Now at California Institute of Technology, Pasadena, California, USA.</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Jean</forename>
<surname>Braun</surname>
</persName>
<affiliation>
<orgName>Research School of Earth Sciences</orgName>
<orgName>Australian National University</orgName>
<address>
<settlement type="city">Canberra, ACT</settlement>
<country key="AU">Australia</country>
</address>
</affiliation>
<affiliation>Now at Géosciences Rennes, Université de Rennes 1, Rennes, France.</affiliation>
</author>
<idno type="istex">C34D1896CF97848336E7A04DA33F235D5B7E688F</idno>
<idno type="ark">ark:/67375/WNG-8R3M6CVX-Z</idno>
<idno type="DOI">10.1029/2004JF000248</idno>
<idno type="editorialOffice">2004JF000248</idno>
<idno type="society">F01008</idno>
<idno type="unit">JGRF130</idno>
<idno type="toTypesetVersion">file:JGRF.JGRF130.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">Journal of Geophysical Research: Earth Surface</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: EARTH SURFACE</title>
<idno type="pISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<idno type="book-DOI">10.1002/(ISSN)2156-2202f</idno>
<idno type="book-part-DOI">10.1002/jgrf.v111.F1</idno>
<idno type="product">JGRF</idno>
<idno type="coden">JGREA2</idno>
<imprint>
<biblScope unit="vol">111</biblScope>
<biblScope unit="issue">F1</biblScope>
<biblScope unit="page-count">23</biblScope>
<date type="published" when="2006-03"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract style="main">
<p xml:id="jgrf130-para-0001">It has been postulated that a steady state between erosional and tectonic processes may develop in continental collision. However, it is not clear whether steady state conditions can be reached for all components of the landscape. Here we show, using landscape evolution models and field evidence, that a true geomorphic steady state may never be reached in the Southern Alps of New Zealand. The strong asymmetries in tectonic uplift and tectonic advection and the onset of glaciations constantly interact to prevent the landscape from reaching a topographic steady state. Evidence suggests that the first‐order geomorphology on the western side of the Southern Alps is controlled by orographic precipitation combined with extreme rates of tectonic uplift, whereas the development of deep glacial valleys on the eastern side is initiated by differential uplift along large faults. We also develop a first‐order equation, governing the dynamics of the Main Divide, to show that both tectonic advection and fluvial erosion efficiency control the position and the height of the main drainage divide. Using a two‐dimensional landscape evolution model, we demonstrate that the transition from glacial to fluvial conditions at the end of the last glaciation led to substantial modifications of the landscape: While the main trunk channels get slowly uplifted, ridges are leveled down, causing the relief to decrease. Hillslopes appear to be affected by fluvial processes which seem to be driven by incision of river tributaries. This reduction of relief will probably never reach a steady state since warmer interglacial periods are substantially shorter than glacial periods.</p>
</abstract>
<textClass>
<keywords>
<term xml:id="jgrf130-kwd-0001">geomorphology</term>
<term xml:id="jgrf130-kwd-0002">landscape evolution</term>
<term xml:id="jgrf130-kwd-0003">numerical models</term>
<term xml:id="jgrf130-kwd-0004">continental collision</term>
</keywords>
<classCode scheme="http://psi.agu.org/taxonomy5/1800">Hydrology</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/5400">Planetary Sciences: Solid Surface Planets</classCode>
<classCode scheme="http://psi.agu.org/taxonomy5/8100">Tectonophysics</classCode>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/C34D1896CF97848336E7A04DA33F235D5B7E688F/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component type="serialArticle" version="2.0" xml:lang="en" xml:id="jgrf130">
<header>
<publicationMeta level="product">
<doi>10.1002/(ISSN)2156-2202f</doi>
<issn type="print">0148-0227</issn>
<issn type="electronic">2156-2202</issn>
<idGroup>
<id type="product" value="JGRF"></id>
<id type="coden" value="JGREA2"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="JOURNAL OF GEOPHYSICAL RESEARCH: EARTH SURFACE">Journal of Geophysical Research: Earth Surface</title>
<title type="short">J. Geophys. Res.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="10">
<doi>10.1002/jgrf.v111.F1</doi>
<idGroup>
<id type="focusSection" value="6"></id>
</idGroup>
<titleGroup>
<title type="focusSection" xml:lang="en">Journal of Geophysical Research: Earth Surface</title>
</titleGroup>
<numberingGroup>
<numbering type="journalVolume" number="111">111</numbering>
<numbering type="journalIssue">F1</numbering>
</numberingGroup>
<coverDate startDate="2006-03">March 2006</coverDate>
</publicationMeta>
<publicationMeta level="unit" position="190" type="article" status="forIssue">
<doi>10.1029/2004JF000248</doi>
<idGroup>
<id type="editorialOffice" value="2004JF000248"></id>
<id type="society" value="F01008"></id>
<id type="unit" value="JGRF130"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="23"></count>
</countGroup>
<copyright ownership="thirdParty">Copyright 2006 by the American Geophysical Union.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2004-10-08"></event>
<event type="manuscriptRevised" date="2005-07-22"></event>
<event type="manuscriptAccepted" date="2005-09-26"></event>
<event type="firstOnline" date="2006-02-11"></event>
<event type="publishedOnlineFinalForm" date="2006-02-11"></event>
<event type="xmlConverted" agent="SPi Global Converter:AGUv3.43_TO_WileyML3Gv1.0.3 version:1.0; WileyML 3G Packaging Tool v1.0" date="2012-12-17"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:4.0.1" date="2014-03-20"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-30"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">n/a</numbering>
<numbering type="pageLast">n/a</numbering>
</numberingGroup>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1800">Hydrology</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/1824">Hydrology: Geomorphology: general</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/5400">Planetary Sciences: Solid Surface Planets</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/5416">Planetary Sciences: Solid Surface Planets: Glaciation</subject>
<subject href="http://psi.agu.org/taxonomy5/5475">Planetary Sciences: Solid Surface Planets: Tectonics</subject>
</subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8100">Tectonophysics</subject>
<subjectInfo>
<subject href="http://psi.agu.org/taxonomy5/8102">Tectonophysics: Continental contractional orogenic belts and inversion tectonics</subject>
</subjectInfo>
</subjectInfo>
<selfCitationGroup>
<citation xml:id="jgrf130-cit-0000" type="self">
<author>
<familyName>Herman</familyName>
,
<givenNames>F.</givenNames>
</author>
, and
<author>
<givenNames>J.</givenNames>
<familyName>Braun</familyName>
</author>
(
<pubYear year="2006">2006</pubYear>
),
<articleTitle>Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand</articleTitle>
,
<journalTitle>J. Geophys. Res.</journalTitle>
,
<vol>111</vol>
, F01008, doi:
<accessionId ref="info:doi/10.1029/2004JF000248">10.1029/2004JF000248</accessionId>
.</citation>
</selfCitationGroup>
<linkGroup>
<link type="toTypesetVersion" href="file:JGRF.JGRF130.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="17"></count>
<count type="tableTotal" number="2"></count>
</countGroup>
<titleGroup>
<title type="main">Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand</title>
<title type="short">FLUVIAL RESPONSE IN SOUTHERN ALPS</title>
<title type="shortAuthors">Herman and Braun</title>
</titleGroup>
<creators>
<creator creatorRole="author" xml:id="jgrf130-cr-0001" affiliationRef="#jgrf130-aff-0001 #jgrf130-aff-0002">
<personName>
<givenNames>Frédéric</givenNames>
<familyName>Herman</familyName>
</personName>
<contactDetails>
<email normalForm="frederic.herman@anu.edu.au">frederic.herman@anu.edu.au</email>
</contactDetails>
</creator>
<creator creatorRole="author" xml:id="jgrf130-cr-0002" affiliationRef="#jgrf130-aff-0001 #jgrf130-aff-0003">
<personName>
<givenNames>Jean</givenNames>
<familyName>Braun</familyName>
</personName>
</creator>
</creators>
<affiliationGroup>
<affiliation countryCode="AU" type="organization" xml:id="jgrf130-aff-0001">
<orgDiv>Research School of Earth Sciences</orgDiv>
<orgName>Australian National University</orgName>
<address>
<city>Canberra, ACT</city>
<country>Australia</country>
</address>
</affiliation>
<affiliation type="organization" xml:id="jgrf130-aff-0002">
<unparsedAffiliation>Now at California Institute of Technology, Pasadena, California, USA.</unparsedAffiliation>
</affiliation>
<affiliation type="organization" xml:id="jgrf130-aff-0003">
<unparsedAffiliation>Now at Géosciences Rennes, Université de Rennes 1, Rennes, France.</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup type="author">
<keyword xml:id="jgrf130-kwd-0001">geomorphology</keyword>
<keyword xml:id="jgrf130-kwd-0002">landscape evolution</keyword>
<keyword xml:id="jgrf130-kwd-0003">numerical models</keyword>
<keyword xml:id="jgrf130-kwd-0004">continental collision</keyword>
</keywordGroup>
<supportingInformation>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrf130:jgrf130-sup-0001-t01"></mediaResource>
<caption>Tab‐delimited Table 1.</caption>
</supportingInfoItem>
<supportingInfoItem>
<mediaResource alt="supplementary data" mimeType="text/plain" href="urn-x:wiley:01480227:media:jgrf130:jgrf130-sup-0002-t02"></mediaResource>
<caption>Tab‐delimited Table 2.</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main">
<p xml:id="jgrf130-para-0001" label="1">It has been postulated that a steady state between erosional and tectonic processes may develop in continental collision. However, it is not clear whether steady state conditions can be reached for all components of the landscape. Here we show, using landscape evolution models and field evidence, that a true geomorphic steady state may never be reached in the Southern Alps of New Zealand. The strong asymmetries in tectonic uplift and tectonic advection and the onset of glaciations constantly interact to prevent the landscape from reaching a topographic steady state. Evidence suggests that the first‐order geomorphology on the western side of the Southern Alps is controlled by orographic precipitation combined with extreme rates of tectonic uplift, whereas the development of deep glacial valleys on the eastern side is initiated by differential uplift along large faults. We also develop a first‐order equation, governing the dynamics of the Main Divide, to show that both tectonic advection and fluvial erosion efficiency control the position and the height of the main drainage divide. Using a two‐dimensional landscape evolution model, we demonstrate that the transition from glacial to fluvial conditions at the end of the last glaciation led to substantial modifications of the landscape: While the main trunk channels get slowly uplifted, ridges are leveled down, causing the relief to decrease. Hillslopes appear to be affected by fluvial processes which seem to be driven by incision of river tributaries. This reduction of relief will probably never reach a steady state since warmer interglacial periods are substantially shorter than glacial periods.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>FLUVIAL RESPONSE IN SOUTHERN ALPS</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand</title>
</titleInfo>
<name type="personal">
<namePart type="given">Frédéric</namePart>
<namePart type="family">Herman</namePart>
<affiliation>E-mail: frederic.herman@anu.edu.au</affiliation>
<affiliation>Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia</affiliation>
<affiliation>Now at California Institute of Technology, Pasadena, California, USA.</affiliation>
<affiliation>E-mail: frederic.herman@anu.edu.au</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean</namePart>
<namePart type="family">Braun</namePart>
<affiliation>Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia</affiliation>
<affiliation>Now at Géosciences Rennes, Université de Rennes 1, Rennes, France.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>Blackwell Publishing Ltd</publisher>
<dateIssued encoding="w3cdtf">2006-03</dateIssued>
<dateCaptured encoding="w3cdtf">2004-10-08</dateCaptured>
<dateValid encoding="w3cdtf">2005-09-26</dateValid>
<edition>Herman, F., and J. Braun (2006), Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand, J. Geophys. Res., 111, F01008, doi:10.1029/2004JF000248.</edition>
<copyrightDate encoding="w3cdtf">2006</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">17</extent>
<extent unit="tables">2</extent>
</physicalDescription>
<abstract>It has been postulated that a steady state between erosional and tectonic processes may develop in continental collision. However, it is not clear whether steady state conditions can be reached for all components of the landscape. Here we show, using landscape evolution models and field evidence, that a true geomorphic steady state may never be reached in the Southern Alps of New Zealand. The strong asymmetries in tectonic uplift and tectonic advection and the onset of glaciations constantly interact to prevent the landscape from reaching a topographic steady state. Evidence suggests that the first‐order geomorphology on the western side of the Southern Alps is controlled by orographic precipitation combined with extreme rates of tectonic uplift, whereas the development of deep glacial valleys on the eastern side is initiated by differential uplift along large faults. We also develop a first‐order equation, governing the dynamics of the Main Divide, to show that both tectonic advection and fluvial erosion efficiency control the position and the height of the main drainage divide. Using a two‐dimensional landscape evolution model, we demonstrate that the transition from glacial to fluvial conditions at the end of the last glaciation led to substantial modifications of the landscape: While the main trunk channels get slowly uplifted, ridges are leveled down, causing the relief to decrease. Hillslopes appear to be affected by fluvial processes which seem to be driven by incision of river tributaries. This reduction of relief will probably never reach a steady state since warmer interglacial periods are substantially shorter than glacial periods.</abstract>
<note type="additional physical form">Tab‐delimited Table 1.Tab‐delimited Table 2.</note>
<subject>
<genre>keywords</genre>
<topic>geomorphology</topic>
<topic>landscape evolution</topic>
<topic>numerical models</topic>
<topic>continental collision</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Geophysical Research: Earth Surface</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>J. Geophys. Res.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>index-terms</genre>
<topic authorityURI="http://psi.agu.org/taxonomy5/1800">Hydrology</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/1824">Hydrology: Geomorphology: general</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/5400">Planetary Sciences: Solid Surface Planets</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/5416">Planetary Sciences: Solid Surface Planets: Glaciation</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/5475">Planetary Sciences: Solid Surface Planets: Tectonics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8100">Tectonophysics</topic>
<topic authorityURI="http://psi.agu.org/taxonomy5/8102">Tectonophysics: Continental contractional orogenic belts and inversion tectonics</topic>
</subject>
<identifier type="ISSN">0148-0227</identifier>
<identifier type="eISSN">2156-2202</identifier>
<identifier type="DOI">10.1002/(ISSN)2156-2202f</identifier>
<identifier type="CODEN">JGREA2</identifier>
<identifier type="PublisherID">JGRF</identifier>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>111</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>F1</number>
</detail>
<extent unit="pages">
<start>n/a</start>
<end>n/a</end>
<total>23</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">C34D1896CF97848336E7A04DA33F235D5B7E688F</identifier>
<identifier type="ark">ark:/67375/WNG-8R3M6CVX-Z</identifier>
<identifier type="DOI">10.1029/2004JF000248</identifier>
<identifier type="ArticleID">2004JF000248</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright 2006 by the American Geophysical Union.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/C34D1896CF97848336E7A04DA33F235D5B7E688F/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002430 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 002430 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:C34D1896CF97848336E7A04DA33F235D5B7E688F
   |texte=   Fluvial response to horizontal shortening and glaciations: A study in the Southern Alps of New Zealand
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024