Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fluvial response to horizontal shortening and glaciations : A study in the Southern Alps of New Zealand

Identifieur interne : 001C81 ( PascalFrancis/Curation ); précédent : 001C80; suivant : 001C82

Fluvial response to horizontal shortening and glaciations : A study in the Southern Alps of New Zealand

Auteurs : Frédéric Herman [Australie] ; Jean Braun [Australie, France]

Source :

RBID : Pascal:06-0245028

Descripteurs français

English descriptors

Abstract

[1] It has been postulated that a steady state between erosional and tectonic processes may develop in continental collision. However, it is not clear whether steady state conditions can be reached for all components of the landscape. Here we show, using landscape evolution models and field evidence, that a true geomorphic steady state may never be reached in the Southern Alps of New Zealand. The strong asymmetries in tectonic uplift and tectonic advection and the onset of glaciations constantly interact to prevent the landscape from reaching a topographic steady state. Evidence suggests that the first-order geomorphology on the western side of the Southern Alps is controlled by orographic precipitation combined with extreme rates of tectonic uplift, whereas the development of deep glacial valleys on the eastern side is initiated by differential uplift along large faults. We also develop a first-order equation, governing the dynamics of the Main Divide, to show that both tectonic advection and fluvial erosion efficiency control the position and the height of the main drainage divide. Using a two-dimensional landscape evolution model, we demonstrate that the transition from glacial to fluvial conditions at the end of the last glaciation led to substantial modifications of the landscape: While the main trunk channels get slowly uplifted, ridges are leveled down, causing the relief to decrease. Hillslopes appear to be affected by fluvial processes which seem to be driven by incision of river tributaries. This reduction of relief will probably never reach a steady state since warmer interglacial periods are substantially shorter than glacial periods.
pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 111
A06       @2 F1
A08 01  1  ENG  @1 Fluvial response to horizontal shortening and glaciations : A study in the Southern Alps of New Zealand
A11 01  1    @1 HERMAN (Frédéric)
A11 02  1    @1 BRAUN (Jean)
A14 01      @1 Research School of Earth Sciences, Australian National University @2 Canberra, ACT @3 AUS @Z 1 aut. @Z 2 aut.
A14 02      @1 Now at Géosciences Rennes, Université de Rennes 1 @2 Rennes @3 FRA @Z 2 aut.
A20       @2 F01008.1-F01008.23
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000156730320080
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/2
A47 01  1    @0 06-0245028
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] It has been postulated that a steady state between erosional and tectonic processes may develop in continental collision. However, it is not clear whether steady state conditions can be reached for all components of the landscape. Here we show, using landscape evolution models and field evidence, that a true geomorphic steady state may never be reached in the Southern Alps of New Zealand. The strong asymmetries in tectonic uplift and tectonic advection and the onset of glaciations constantly interact to prevent the landscape from reaching a topographic steady state. Evidence suggests that the first-order geomorphology on the western side of the Southern Alps is controlled by orographic precipitation combined with extreme rates of tectonic uplift, whereas the development of deep glacial valleys on the eastern side is initiated by differential uplift along large faults. We also develop a first-order equation, governing the dynamics of the Main Divide, to show that both tectonic advection and fluvial erosion efficiency control the position and the height of the main drainage divide. Using a two-dimensional landscape evolution model, we demonstrate that the transition from glacial to fluvial conditions at the end of the last glaciation led to substantial modifications of the landscape: While the main trunk channels get slowly uplifted, ridges are leveled down, causing the relief to decrease. Hillslopes appear to be affected by fluvial processes which seem to be driven by incision of river tributaries. This reduction of relief will probably never reach a steady state since warmer interglacial periods are substantially shorter than glacial periods.
C02 01  2    @0 220
C02 02  3    @0 001E
C02 03  2    @0 001E01
C03 01  2  FRE  @0 Glaciation @5 01
C03 01  2  ENG  @0 glaciation @5 01
C03 01  2  SPA  @0 Glaciación @5 01
C03 02  2  FRE  @0 Tectonique @5 02
C03 02  2  ENG  @0 tectonics @5 02
C03 02  2  SPA  @0 Tectónico @5 02
C03 03  2  FRE  @0 Paysage @5 03
C03 03  2  ENG  @0 landscapes @5 03
C03 03  2  SPA  @0 Paisaje @5 03
C03 04  2  FRE  @0 Modèle @5 04
C03 04  2  ENG  @0 models @5 04
C03 04  2  SPA  @0 Modelo @5 04
C03 05  2  FRE  @0 Asymétrie @5 05
C03 05  2  ENG  @0 asymmetry @5 05
C03 06  2  FRE  @0 Surrection @5 06
C03 06  2  ENG  @0 uplifts @5 06
C03 07  2  FRE  @0 Advection @5 07
C03 07  2  ENG  @0 advection @5 07
C03 08  X  FRE  @0 Ordre 1 @5 08
C03 08  X  ENG  @0 First order @5 08
C03 08  X  SPA  @0 Orden 1 @5 08
C03 09  2  FRE  @0 Géomorphologie @5 09
C03 09  2  ENG  @0 geomorphology @5 09
C03 09  2  SPA  @0 Geomorfología @5 09
C03 10  2  FRE  @0 Précipitation atmosphérique @5 10
C03 10  2  ENG  @0 atmospheric precipitation @5 10
C03 10  2  SPA  @0 Precipitación atmosférica @5 10
C03 11  2  FRE  @0 Valeur extrême @5 11
C03 11  2  ENG  @0 extreme value @5 11
C03 12  2  FRE  @0 Vallée @5 12
C03 12  2  ENG  @0 valleys @5 12
C03 12  2  SPA  @0 Valle @5 12
C03 13  2  FRE  @0 Faille @5 13
C03 13  2  ENG  @0 faults @5 13
C03 13  2  SPA  @0 Quebrado @5 13
C03 14  X  FRE  @0 Equation ordre 1 @5 14
C03 14  X  ENG  @0 First order equation @5 14
C03 14  X  SPA  @0 Ecuación orden 1 @5 14
C03 15  2  FRE  @0 Dynamique @5 15
C03 15  2  ENG  @0 dynamics @5 15
C03 15  2  SPA  @0 Dinámica @5 15
C03 16  2  FRE  @0 Erosion fluviatile @5 16
C03 16  2  ENG  @0 fluvial erosion @5 16
C03 16  2  SPA  @0 Erosión fluvial @5 16
C03 17  2  FRE  @0 Efficacité @5 17
C03 17  2  ENG  @0 efficiency @5 17
C03 18  X  FRE  @0 Position @5 18
C03 18  X  ENG  @0 Position @5 18
C03 18  X  SPA  @0 Posición @5 18
C03 19  X  FRE  @0 Hauteur @5 19
C03 19  X  ENG  @0 Height @5 19
C03 19  X  SPA  @0 Altura @5 19
C03 20  2  FRE  @0 Ligne partage eau @5 20
C03 20  2  ENG  @0 drainage divide @5 20
C03 21  2  FRE  @0 Chenal @5 21
C03 21  2  ENG  @0 channels @5 21
C03 21  2  SPA  @0 Canal @5 21
C03 22  2  FRE  @0 Relief @5 22
C03 22  2  ENG  @0 relief @5 22
C03 23  2  FRE  @0 Rivière @5 23
C03 23  2  ENG  @0 rivers @5 23
C03 23  2  SPA  @0 Río @5 23
C03 24  2  FRE  @0 Affluent @5 24
C03 24  2  ENG  @0 tributaries @5 24
C03 25  2  FRE  @0 Période interglaciaire @5 25
C03 25  2  ENG  @0 interglacial periods @5 25
C03 25  2  SPA  @0 Período interglaciario @5 25
C03 26  2  FRE  @0 Alpes Australes Nouvelle Zélande Ile Sud @2 NG @5 61
C03 26  2  ENG  @0 New Zealand Southern Alps @2 NG @5 61
C07 01  2  FRE  @0 Nouvelle Zélande Ile Sud @2 NG
C07 01  2  ENG  @0 South Island @2 NG
C07 01  2  SPA  @0 Nueva Zelanda Isla Sur @2 NG
C07 02  2  FRE  @0 Nouvelle Zélande @2 NG
C07 02  2  ENG  @0 New Zealand @2 NG
C07 02  2  SPA  @0 Nueva Zelandia @2 NG
C07 03  2  FRE  @0 Australasie
C07 03  2  ENG  @0 Australasia
C07 03  2  SPA  @0 Australasia
N21       @1 156
N44 01      @1 OTO
N82       @1 OTO

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0245028

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Fluvial response to horizontal shortening and glaciations : A study in the Southern Alps of New Zealand</title>
<author>
<name sortKey="Herman, Frederic" sort="Herman, Frederic" uniqKey="Herman F" first="Frédéric" last="Herman">Frédéric Herman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Now at Géosciences Rennes, Université de Rennes 1</s1>
<s2>Rennes</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0245028</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0245028 INIST</idno>
<idno type="RBID">Pascal:06-0245028</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">004414</idno>
<idno type="wicri:Area/PascalFrancis/Curation">001C81</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Fluvial response to horizontal shortening and glaciations : A study in the Southern Alps of New Zealand</title>
<author>
<name sortKey="Herman, Frederic" sort="Herman, Frederic" uniqKey="Herman F" first="Frédéric" last="Herman">Frédéric Herman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
</author>
<author>
<name sortKey="Braun, Jean" sort="Braun, Jean" uniqKey="Braun J" first="Jean" last="Braun">Jean Braun</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Australie</country>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Now at Géosciences Rennes, Université de Rennes 1</s1>
<s2>Rennes</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>France</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>First order</term>
<term>First order equation</term>
<term>Height</term>
<term>New Zealand Southern Alps</term>
<term>Position</term>
<term>advection</term>
<term>asymmetry</term>
<term>atmospheric precipitation</term>
<term>channels</term>
<term>drainage divide</term>
<term>dynamics</term>
<term>efficiency</term>
<term>extreme value</term>
<term>faults</term>
<term>fluvial erosion</term>
<term>geomorphology</term>
<term>glaciation</term>
<term>interglacial periods</term>
<term>landscapes</term>
<term>models</term>
<term>relief</term>
<term>rivers</term>
<term>tectonics</term>
<term>tributaries</term>
<term>uplifts</term>
<term>valleys</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Glaciation</term>
<term>Tectonique</term>
<term>Paysage</term>
<term>Modèle</term>
<term>Asymétrie</term>
<term>Surrection</term>
<term>Advection</term>
<term>Ordre 1</term>
<term>Géomorphologie</term>
<term>Précipitation atmosphérique</term>
<term>Valeur extrême</term>
<term>Vallée</term>
<term>Faille</term>
<term>Equation ordre 1</term>
<term>Dynamique</term>
<term>Erosion fluviatile</term>
<term>Efficacité</term>
<term>Position</term>
<term>Hauteur</term>
<term>Ligne partage eau</term>
<term>Chenal</term>
<term>Relief</term>
<term>Rivière</term>
<term>Affluent</term>
<term>Période interglaciaire</term>
<term>Alpes Australes Nouvelle Zélande Ile Sud</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Géomorphologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] It has been postulated that a steady state between erosional and tectonic processes may develop in continental collision. However, it is not clear whether steady state conditions can be reached for all components of the landscape. Here we show, using landscape evolution models and field evidence, that a true geomorphic steady state may never be reached in the Southern Alps of New Zealand. The strong asymmetries in tectonic uplift and tectonic advection and the onset of glaciations constantly interact to prevent the landscape from reaching a topographic steady state. Evidence suggests that the first-order geomorphology on the western side of the Southern Alps is controlled by orographic precipitation combined with extreme rates of tectonic uplift, whereas the development of deep glacial valleys on the eastern side is initiated by differential uplift along large faults. We also develop a first-order equation, governing the dynamics of the Main Divide, to show that both tectonic advection and fluvial erosion efficiency control the position and the height of the main drainage divide. Using a two-dimensional landscape evolution model, we demonstrate that the transition from glacial to fluvial conditions at the end of the last glaciation led to substantial modifications of the landscape: While the main trunk channels get slowly uplifted, ridges are leveled down, causing the relief to decrease. Hillslopes appear to be affected by fluvial processes which seem to be driven by incision of river tributaries. This reduction of relief will probably never reach a steady state since warmer interglacial periods are substantially shorter than glacial periods.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>111</s2>
</fA05>
<fA06>
<s2>F1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Fluvial response to horizontal shortening and glaciations : A study in the Southern Alps of New Zealand</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HERMAN (Frédéric)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BRAUN (Jean)</s1>
</fA11>
<fA14 i1="01">
<s1>Research School of Earth Sciences, Australian National University</s1>
<s2>Canberra, ACT</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Now at Géosciences Rennes, Université de Rennes 1</s1>
<s2>Rennes</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>F01008.1-F01008.23</s2>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000156730320080</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/2</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0245028</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] It has been postulated that a steady state between erosional and tectonic processes may develop in continental collision. However, it is not clear whether steady state conditions can be reached for all components of the landscape. Here we show, using landscape evolution models and field evidence, that a true geomorphic steady state may never be reached in the Southern Alps of New Zealand. The strong asymmetries in tectonic uplift and tectonic advection and the onset of glaciations constantly interact to prevent the landscape from reaching a topographic steady state. Evidence suggests that the first-order geomorphology on the western side of the Southern Alps is controlled by orographic precipitation combined with extreme rates of tectonic uplift, whereas the development of deep glacial valleys on the eastern side is initiated by differential uplift along large faults. We also develop a first-order equation, governing the dynamics of the Main Divide, to show that both tectonic advection and fluvial erosion efficiency control the position and the height of the main drainage divide. Using a two-dimensional landscape evolution model, we demonstrate that the transition from glacial to fluvial conditions at the end of the last glaciation led to substantial modifications of the landscape: While the main trunk channels get slowly uplifted, ridges are leveled down, causing the relief to decrease. Hillslopes appear to be affected by fluvial processes which seem to be driven by incision of river tributaries. This reduction of relief will probably never reach a steady state since warmer interglacial periods are substantially shorter than glacial periods.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Glaciation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>glaciation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Glaciación</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Tectonique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>tectonics</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Tectónico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Paysage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>landscapes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="SPA">
<s0>Paisaje</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>models</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Asymétrie</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>asymmetry</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Surrection</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>uplifts</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Advection</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>advection</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Ordre 1</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>First order</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Orden 1</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Géomorphologie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>geomorphology</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Geomorfología</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Précipitation atmosphérique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>atmospheric precipitation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="SPA">
<s0>Precipitación atmosférica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Valeur extrême</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>extreme value</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Vallée</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>valleys</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Valle</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Faille</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>faults</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Quebrado</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Equation ordre 1</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>First order equation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Ecuación orden 1</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Dynamique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>dynamics</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Dinámica</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Erosion fluviatile</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>fluvial erosion</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Erosión fluvial</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Efficacité</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>efficiency</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Position</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Position</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Posición</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Hauteur</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Height</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Altura</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Ligne partage eau</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>drainage divide</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Chenal</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>channels</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>Canal</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Relief</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>relief</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Rivière</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>rivers</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="SPA">
<s0>Río</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Affluent</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>tributaries</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="2" l="FRE">
<s0>Période interglaciaire</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="ENG">
<s0>interglacial periods</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="2" l="SPA">
<s0>Período interglaciario</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="2" l="FRE">
<s0>Alpes Australes Nouvelle Zélande Ile Sud</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="26" i2="2" l="ENG">
<s0>New Zealand Southern Alps</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Nouvelle Zélande Ile Sud</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>South Island</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>Nueva Zelanda Isla Sur</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="FRE">
<s0>Nouvelle Zélande</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="ENG">
<s0>New Zealand</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="2" l="SPA">
<s0>Nueva Zelandia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="03" i2="2" l="FRE">
<s0>Australasie</s0>
</fC07>
<fC07 i1="03" i2="2" l="ENG">
<s0>Australasia</s0>
</fC07>
<fC07 i1="03" i2="2" l="SPA">
<s0>Australasia</s0>
</fC07>
<fN21>
<s1>156</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PascalFrancis/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C81 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Curation/biblio.hfd -nk 001C81 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PascalFrancis
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:06-0245028
   |texte=   Fluvial response to horizontal shortening and glaciations : A study in the Southern Alps of New Zealand
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024