Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Haptic feedback and control of a flexible surgical endoscopic robot

Identifieur interne : 000162 ( PascalFrancis/Corpus ); précédent : 000161; suivant : 000163

Haptic feedback and control of a flexible surgical endoscopic robot

Auteurs : ZHENG WANG ; ZHENGLONG SUN ; SOO JAY PHEE

Source :

RBID : Pascal:13-0340996

Descripteurs français

English descriptors

Abstract

A flexible endoscope could reach the potential surgical site via a single small incision on the patient or even through natural orifices, making it a very promising platform for surgical procedures. However, endoscopic surgery has strict spatial constraints on both tool-channel size and surgical site volume. It is therefore very challenging to deploy and control dexterous robotic instruments to conduct surgical procedures endoscopically. Pioneering endoscopic surgical robots have already been introduced, but the performance is limited by the flexible neck of the robot that passes through the endoscope tool channel. In this article we present a series of new developments to improve the performance of the robot: a force transmission model to address flexibility, elongation study for precise position control, and tissue property modeling for haptic feedback. Validation experiment results are presented for each sector. An integrated control architecture of the robot system is given in the end.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0169-2607
A03   1    @0 Comput. methods programs biomed. : (Print)
A05       @2 112
A06       @2 2
A08 01  1  ENG  @1 Haptic feedback and control of a flexible surgical endoscopic robot
A09 01  1  ENG  @1 Computer Assisted Tools for Medical Robotics
A11 01  1    @1 ZHENG WANG
A11 02  1    @1 ZHENGLONG SUN
A11 03  1    @1 SOO JAY PHEE
A12 01  1    @1 SABATER (Jose M.) @9 ed.
A12 02  1    @1 GARCIA ARACIL (Nicolas) @9 ed.
A12 03  1    @1 ACCOTO (Dino) @9 ed.
A12 04  1    @1 JOSKOWICZ (Leo) @9 ed.
A14 01      @1 Wyss Institute for Biologically Inspired Engineering, Harvard University @3 USA @Z 1 aut.
A14 02      @1 School of Mechanical and Aerospace Engineering, Nanyang Technological University @3 SGP @Z 1 aut. @Z 2 aut. @Z 3 aut.
A15 01      @1 Nbio Group at the Miguel Hernández University @3 ESP @Z 1 aut. @Z 2 aut.
A20       @1 260-271
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 14676 @5 354000508224030030
A44       @0 0000 @1 © 2013 INIST-CNRS. All rights reserved.
A45       @0 35 ref.
A47 01  1    @0 13-0340996
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Computer methods and programs in biomedicine : (Print)
A66 01      @0 GBR
C01 01    ENG  @0 A flexible endoscope could reach the potential surgical site via a single small incision on the patient or even through natural orifices, making it a very promising platform for surgical procedures. However, endoscopic surgery has strict spatial constraints on both tool-channel size and surgical site volume. It is therefore very challenging to deploy and control dexterous robotic instruments to conduct surgical procedures endoscopically. Pioneering endoscopic surgical robots have already been introduced, but the performance is limited by the flexible neck of the robot that passes through the endoscope tool channel. In this article we present a series of new developments to improve the performance of the robot: a force transmission model to address flexibility, elongation study for precise position control, and tissue property modeling for haptic feedback. Validation experiment results are presented for each sector. An integrated control architecture of the robot system is given in the end.
C02 01  X    @0 001D02B04
C02 02  X    @0 002B25
C02 03  X    @0 001D02D11
C03 01  X  FRE  @0 Interface utilisateur @5 06
C03 01  X  ENG  @0 User interface @5 06
C03 01  X  SPA  @0 Interfase usuario @5 06
C03 02  X  FRE  @0 Commande boucle fermée @5 07
C03 02  X  ENG  @0 Closed feedback @5 07
C03 02  X  SPA  @0 Bucle realimentación cerrada @5 07
C03 03  X  FRE  @0 Robotique @5 08
C03 03  X  ENG  @0 Robotics @5 08
C03 03  X  SPA  @0 Robótica @5 08
C03 04  X  FRE  @0 Robot @5 09
C03 04  X  ENG  @0 Robot @5 09
C03 04  X  SPA  @0 Robot @5 09
C03 05  X  FRE  @0 Chirurgie miniinvasive @5 10
C03 05  X  ENG  @0 Minimally invasive surgery @5 10
C03 05  X  SPA  @0 Cirugía mini invasiva @5 10
C03 06  X  FRE  @0 Dextérité @5 11
C03 06  X  ENG  @0 Dexterity @5 11
C03 06  X  SPA  @0 Destreza @5 11
C03 07  X  FRE  @0 Mécanique précision @5 12
C03 07  X  ENG  @0 Precision engineering @5 12
C03 07  X  SPA  @0 Mecánica precisión @5 12
C03 08  X  FRE  @0 Sensibilité tactile @5 18
C03 08  X  ENG  @0 Tactile sensitivity @5 18
C03 08  X  SPA  @0 Sensibilidad tactil @5 18
C03 09  X  FRE  @0 Chirurgie endoscopique @5 19
C03 09  X  ENG  @0 Endoscopic surgery @5 19
C03 09  X  SPA  @0 Cirugía endoscópica @5 19
C03 10  X  FRE  @0 Rétroaction @5 20
C03 10  X  ENG  @0 Feedback regulation @5 20
C03 10  X  SPA  @0 Retroacción @5 20
C03 11  X  FRE  @0 Endoscopie @5 21
C03 11  X  ENG  @0 Endoscopy @5 21
C03 11  X  SPA  @0 Endoscopía @5 21
C03 12  X  FRE  @0 Commande position @5 22
C03 12  X  ENG  @0 Position control @5 22
C03 12  X  SPA  @0 Regulación de la posición @5 22
C03 13  X  FRE  @0 Modélisation @5 23
C03 13  X  ENG  @0 Modeling @5 23
C03 13  X  SPA  @0 Modelización @5 23
C03 14  X  FRE  @0 Tissu @5 24
C03 14  X  ENG  @0 Tissue @5 24
C03 14  X  SPA  @0 Tejido @5 24
C03 15  X  FRE  @0 Validation @5 25
C03 15  X  ENG  @0 Validation @5 25
C03 15  X  SPA  @0 Validación @5 25
C03 16  X  FRE  @0 Endoscope @5 33
C03 16  X  ENG  @0 Endoscope @5 33
C03 16  X  SPA  @0 Endoscopio @5 33
C03 17  X  FRE  @0 Cathéter @5 34
C03 17  X  ENG  @0 Catheter @5 34
C03 17  X  SPA  @0 Catéter @5 34
C03 18  X  FRE  @0 Etude expérimentale @5 35
C03 18  X  ENG  @0 Experimental study @5 35
C03 18  X  SPA  @0 Estudio experimental @5 35
N21       @1 322
N44 01      @1 OTO
N82       @1 OTO
pR  
A30 01  1  ENG  @1 IEEE International Conference on Biomedical Robotics and Biomechatronics @3 Rome ITA @4 2012-06-24

Format Inist (serveur)

NO : PASCAL 13-0340996 INIST
ET : Haptic feedback and control of a flexible surgical endoscopic robot
AU : ZHENG WANG; ZHENGLONG SUN; SOO JAY PHEE; SABATER (Jose M.); GARCIA ARACIL (Nicolas); ACCOTO (Dino); JOSKOWICZ (Leo)
AF : Wyss Institute for Biologically Inspired Engineering, Harvard University/Etats-Unis (1 aut.); School of Mechanical and Aerospace Engineering, Nanyang Technological University/Singapour (1 aut., 2 aut., 3 aut.); Nbio Group at the Miguel Hernández University/Espagne (1 aut., 2 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Computer methods and programs in biomedicine : (Print); ISSN 0169-2607; Royaume-Uni; Da. 2013; Vol. 112; No. 2; Pp. 260-271; Bibl. 35 ref.
LA : Anglais
EA : A flexible endoscope could reach the potential surgical site via a single small incision on the patient or even through natural orifices, making it a very promising platform for surgical procedures. However, endoscopic surgery has strict spatial constraints on both tool-channel size and surgical site volume. It is therefore very challenging to deploy and control dexterous robotic instruments to conduct surgical procedures endoscopically. Pioneering endoscopic surgical robots have already been introduced, but the performance is limited by the flexible neck of the robot that passes through the endoscope tool channel. In this article we present a series of new developments to improve the performance of the robot: a force transmission model to address flexibility, elongation study for precise position control, and tissue property modeling for haptic feedback. Validation experiment results are presented for each sector. An integrated control architecture of the robot system is given in the end.
CC : 001D02B04; 002B25; 001D02D11
FD : Interface utilisateur; Commande boucle fermée; Robotique; Robot; Chirurgie miniinvasive; Dextérité; Mécanique précision; Sensibilité tactile; Chirurgie endoscopique; Rétroaction; Endoscopie; Commande position; Modélisation; Tissu; Validation; Endoscope; Cathéter; Etude expérimentale
ED : User interface; Closed feedback; Robotics; Robot; Minimally invasive surgery; Dexterity; Precision engineering; Tactile sensitivity; Endoscopic surgery; Feedback regulation; Endoscopy; Position control; Modeling; Tissue; Validation; Endoscope; Catheter; Experimental study
SD : Interfase usuario; Bucle realimentación cerrada; Robótica; Robot; Cirugía mini invasiva; Destreza; Mecánica precisión; Sensibilidad tactil; Cirugía endoscópica; Retroacción; Endoscopía; Regulación de la posición; Modelización; Tejido; Validación; Endoscopio; Catéter; Estudio experimental
LO : INIST-14676.354000508224030030
ID : 13-0340996

Links to Exploration step

Pascal:13-0340996

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Haptic feedback and control of a flexible surgical endoscopic robot</title>
<author>
<name sortKey="Zheng Wang" sort="Zheng Wang" uniqKey="Zheng Wang" last="Zheng Wang">ZHENG WANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Wyss Institute for Biologically Inspired Engineering, Harvard University</s1>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Mechanical and Aerospace Engineering, Nanyang Technological University</s1>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhenglong Sun" sort="Zhenglong Sun" uniqKey="Zhenglong Sun" last="Zhenglong Sun">ZHENGLONG SUN</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Mechanical and Aerospace Engineering, Nanyang Technological University</s1>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Soo Jay Phee" sort="Soo Jay Phee" uniqKey="Soo Jay Phee" last="Soo Jay Phee">SOO JAY PHEE</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Mechanical and Aerospace Engineering, Nanyang Technological University</s1>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">13-0340996</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0340996 INIST</idno>
<idno type="RBID">Pascal:13-0340996</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000162</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Haptic feedback and control of a flexible surgical endoscopic robot</title>
<author>
<name sortKey="Zheng Wang" sort="Zheng Wang" uniqKey="Zheng Wang" last="Zheng Wang">ZHENG WANG</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Wyss Institute for Biologically Inspired Engineering, Harvard University</s1>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Mechanical and Aerospace Engineering, Nanyang Technological University</s1>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Zhenglong Sun" sort="Zhenglong Sun" uniqKey="Zhenglong Sun" last="Zhenglong Sun">ZHENGLONG SUN</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Mechanical and Aerospace Engineering, Nanyang Technological University</s1>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Soo Jay Phee" sort="Soo Jay Phee" uniqKey="Soo Jay Phee" last="Soo Jay Phee">SOO JAY PHEE</name>
<affiliation>
<inist:fA14 i1="02">
<s1>School of Mechanical and Aerospace Engineering, Nanyang Technological University</s1>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Computer methods and programs in biomedicine : (Print)</title>
<title level="j" type="abbreviated">Comput. methods programs biomed. : (Print)</title>
<idno type="ISSN">0169-2607</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Computer methods and programs in biomedicine : (Print)</title>
<title level="j" type="abbreviated">Comput. methods programs biomed. : (Print)</title>
<idno type="ISSN">0169-2607</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catheter</term>
<term>Closed feedback</term>
<term>Dexterity</term>
<term>Endoscope</term>
<term>Endoscopic surgery</term>
<term>Endoscopy</term>
<term>Experimental study</term>
<term>Feedback regulation</term>
<term>Minimally invasive surgery</term>
<term>Modeling</term>
<term>Position control</term>
<term>Precision engineering</term>
<term>Robot</term>
<term>Robotics</term>
<term>Tactile sensitivity</term>
<term>Tissue</term>
<term>User interface</term>
<term>Validation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Interface utilisateur</term>
<term>Commande boucle fermée</term>
<term>Robotique</term>
<term>Robot</term>
<term>Chirurgie miniinvasive</term>
<term>Dextérité</term>
<term>Mécanique précision</term>
<term>Sensibilité tactile</term>
<term>Chirurgie endoscopique</term>
<term>Rétroaction</term>
<term>Endoscopie</term>
<term>Commande position</term>
<term>Modélisation</term>
<term>Tissu</term>
<term>Validation</term>
<term>Endoscope</term>
<term>Cathéter</term>
<term>Etude expérimentale</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A flexible endoscope could reach the potential surgical site via a single small incision on the patient or even through natural orifices, making it a very promising platform for surgical procedures. However, endoscopic surgery has strict spatial constraints on both tool-channel size and surgical site volume. It is therefore very challenging to deploy and control dexterous robotic instruments to conduct surgical procedures endoscopically. Pioneering endoscopic surgical robots have already been introduced, but the performance is limited by the flexible neck of the robot that passes through the endoscope tool channel. In this article we present a series of new developments to improve the performance of the robot: a force transmission model to address flexibility, elongation study for precise position control, and tissue property modeling for haptic feedback. Validation experiment results are presented for each sector. An integrated control architecture of the robot system is given in the end.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0169-2607</s0>
</fA01>
<fA03 i2="1">
<s0>Comput. methods programs biomed. : (Print)</s0>
</fA03>
<fA05>
<s2>112</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Haptic feedback and control of a flexible surgical endoscopic robot</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Computer Assisted Tools for Medical Robotics</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>ZHENG WANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZHENGLONG SUN</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SOO JAY PHEE</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>SABATER (Jose M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>GARCIA ARACIL (Nicolas)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>ACCOTO (Dino)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>JOSKOWICZ (Leo)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Wyss Institute for Biologically Inspired Engineering, Harvard University</s1>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Mechanical and Aerospace Engineering, Nanyang Technological University</s1>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Nbio Group at the Miguel Hernández University</s1>
<s3>ESP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>260-271</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14676</s2>
<s5>354000508224030030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>35 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0340996</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Computer methods and programs in biomedicine : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A flexible endoscope could reach the potential surgical site via a single small incision on the patient or even through natural orifices, making it a very promising platform for surgical procedures. However, endoscopic surgery has strict spatial constraints on both tool-channel size and surgical site volume. It is therefore very challenging to deploy and control dexterous robotic instruments to conduct surgical procedures endoscopically. Pioneering endoscopic surgical robots have already been introduced, but the performance is limited by the flexible neck of the robot that passes through the endoscope tool channel. In this article we present a series of new developments to improve the performance of the robot: a force transmission model to address flexibility, elongation study for precise position control, and tissue property modeling for haptic feedback. Validation experiment results are presented for each sector. An integrated control architecture of the robot system is given in the end.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02B04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B25</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Interface utilisateur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>User interface</s0>
<s5>06</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Interfase usuario</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Commande boucle fermée</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Closed feedback</s0>
<s5>07</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Bucle realimentación cerrada</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Robotique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Robotics</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Robótica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Robot</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Robot</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Robot</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Chirurgie miniinvasive</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Minimally invasive surgery</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Cirugía mini invasiva</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Dextérité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Dexterity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Destreza</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Mécanique précision</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Precision engineering</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Mecánica precisión</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>18</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>18</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Chirurgie endoscopique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Endoscopic surgery</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Cirugía endoscópica</s0>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Rétroaction</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Feedback regulation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Retroacción</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Endoscopie</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Endoscopy</s0>
<s5>21</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Endoscopía</s0>
<s5>21</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Commande position</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Position control</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Regulación de la posición</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Tissu</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Tissue</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Tejido</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Validation</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Validation</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Validación</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Endoscope</s0>
<s5>33</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Endoscope</s0>
<s5>33</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Endoscopio</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Cathéter</s0>
<s5>34</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Catheter</s0>
<s5>34</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Catéter</s0>
<s5>34</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>35</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>35</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>35</s5>
</fC03>
<fN21>
<s1>322</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>IEEE International Conference on Biomedical Robotics and Biomechatronics</s1>
<s3>Rome ITA</s3>
<s4>2012-06-24</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 13-0340996 INIST</NO>
<ET>Haptic feedback and control of a flexible surgical endoscopic robot</ET>
<AU>ZHENG WANG; ZHENGLONG SUN; SOO JAY PHEE; SABATER (Jose M.); GARCIA ARACIL (Nicolas); ACCOTO (Dino); JOSKOWICZ (Leo)</AU>
<AF>Wyss Institute for Biologically Inspired Engineering, Harvard University/Etats-Unis (1 aut.); School of Mechanical and Aerospace Engineering, Nanyang Technological University/Singapour (1 aut., 2 aut., 3 aut.); Nbio Group at the Miguel Hernández University/Espagne (1 aut., 2 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Computer methods and programs in biomedicine : (Print); ISSN 0169-2607; Royaume-Uni; Da. 2013; Vol. 112; No. 2; Pp. 260-271; Bibl. 35 ref.</SO>
<LA>Anglais</LA>
<EA>A flexible endoscope could reach the potential surgical site via a single small incision on the patient or even through natural orifices, making it a very promising platform for surgical procedures. However, endoscopic surgery has strict spatial constraints on both tool-channel size and surgical site volume. It is therefore very challenging to deploy and control dexterous robotic instruments to conduct surgical procedures endoscopically. Pioneering endoscopic surgical robots have already been introduced, but the performance is limited by the flexible neck of the robot that passes through the endoscope tool channel. In this article we present a series of new developments to improve the performance of the robot: a force transmission model to address flexibility, elongation study for precise position control, and tissue property modeling for haptic feedback. Validation experiment results are presented for each sector. An integrated control architecture of the robot system is given in the end.</EA>
<CC>001D02B04; 002B25; 001D02D11</CC>
<FD>Interface utilisateur; Commande boucle fermée; Robotique; Robot; Chirurgie miniinvasive; Dextérité; Mécanique précision; Sensibilité tactile; Chirurgie endoscopique; Rétroaction; Endoscopie; Commande position; Modélisation; Tissu; Validation; Endoscope; Cathéter; Etude expérimentale</FD>
<ED>User interface; Closed feedback; Robotics; Robot; Minimally invasive surgery; Dexterity; Precision engineering; Tactile sensitivity; Endoscopic surgery; Feedback regulation; Endoscopy; Position control; Modeling; Tissue; Validation; Endoscope; Catheter; Experimental study</ED>
<SD>Interfase usuario; Bucle realimentación cerrada; Robótica; Robot; Cirugía mini invasiva; Destreza; Mecánica precisión; Sensibilidad tactil; Cirugía endoscópica; Retroacción; Endoscopía; Regulación de la posición; Modelización; Tejido; Validación; Endoscopio; Catéter; Estudio experimental</SD>
<LO>INIST-14676.354000508224030030</LO>
<ID>13-0340996</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000162 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000162 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:13-0340996
   |texte=   Haptic feedback and control of a flexible surgical endoscopic robot
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024