Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Micro-to-nano biomechanical modeling for assisted biological cell injection.

Identifieur interne : 001A32 ( Main/Exploration ); précédent : 001A31; suivant : 001A33

Micro-to-nano biomechanical modeling for assisted biological cell injection.

Auteurs : Hamid Ladjal [France] ; Jean-Luc Hanus ; Antoine Ferreira

Source :

RBID : pubmed:23613019

English descriptors

Abstract

To facilitate training of biological cell injection operations, we are developing an interactive virtual environment to simulate needle insertion into biological cells. This paper presents methodologies for dynamic modeling, visual/haptic display, and model validation of cell injection. We first investigate the challenging issues in the modeling of the biomechanical properties of living cells. We propose two dynamic models to simulate cell deformation and puncture. The first approach is based on the assumptions that the mechanical response of living cells is mainly determined by the cytoskeleton and that the cytoskeleton is organized as a tensegrity structure including microfilaments, microtubules, and intermediate filaments. Equivalent microtubules struts are represented with a linear mass-tensor finite-element model and equivalent microfilaments and intermediate filaments with viscoelastic Kelvin-Voigt elements. The second modeling method assumes the overall cell as an homogeneous hyperelastic model (St, Venant-Kirchhoff). Both graphic and haptic rendering are provided in real time to the operator through a 3-D virtual environment. Simulated responses are compared to experimental data to show the effectiveness of the proposed physically based model.

Url:
DOI: 10.1109/TBME.2013.2258155
PubMed: 23613019


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Micro-to-nano biomechanical modeling for assisted biological cell injection.</title>
<author>
<name sortKey="Ladjal, Hamid" sort="Ladjal, Hamid" uniqKey="Ladjal H" first="Hamid" last="Ladjal">Hamid Ladjal</name>
<affiliation wicri:level="4">
<nlm:affiliation>LIRIS laboratory and IPNL laboratory CNRS, Universite Claude Bernard Lyon 1, Villeurbanne 69100, France. hamid.ladjal@liris.cnrs.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>LIRIS laboratory and IPNL laboratory CNRS, Universite Claude Bernard Lyon 1, Villeurbanne 69100</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
<orgName type="university">Université Claude Bernard Lyon1</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hanus, Jean Luc" sort="Hanus, Jean Luc" uniqKey="Hanus J" first="Jean-Luc" last="Hanus">Jean-Luc Hanus</name>
</author>
<author>
<name sortKey="Ferreira, Antoine" sort="Ferreira, Antoine" uniqKey="Ferreira A" first="Antoine" last="Ferreira">Antoine Ferreira</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1109/TBME.2013.2258155</idno>
<idno type="RBID">pubmed:23613019</idno>
<idno type="pmid">23613019</idno>
<idno type="wicri:Area/PubMed/Corpus">000969</idno>
<idno type="wicri:Area/PubMed/Curation">000969</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000856</idno>
<idno type="wicri:Area/Ncbi/Merge">002652</idno>
<idno type="wicri:Area/Ncbi/Curation">002652</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">002652</idno>
<idno type="wicri:source">HAL</idno>
<idno type="RBID">Hal:hal-00821621</idno>
<idno type="url">https://hal.archives-ouvertes.fr/hal-00821621</idno>
<idno type="wicri:Area/Hal/Corpus">000373</idno>
<idno type="wicri:Area/Hal/Curation">000373</idno>
<idno type="wicri:Area/Hal/Checkpoint">000126</idno>
<idno type="wicri:doubleKey">0018-9294:2013:Ladjal H:micro:to:nano</idno>
<idno type="wicri:Area/Main/Merge">001A50</idno>
<idno type="wicri:Area/Main/Curation">001A32</idno>
<idno type="wicri:Area/Main/Exploration">001A32</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Micro-to-nano biomechanical modeling for assisted biological cell injection.</title>
<author>
<name sortKey="Ladjal, Hamid" sort="Ladjal, Hamid" uniqKey="Ladjal H" first="Hamid" last="Ladjal">Hamid Ladjal</name>
<affiliation wicri:level="4">
<nlm:affiliation>LIRIS laboratory and IPNL laboratory CNRS, Universite Claude Bernard Lyon 1, Villeurbanne 69100, France. hamid.ladjal@liris.cnrs.fr</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>LIRIS laboratory and IPNL laboratory CNRS, Universite Claude Bernard Lyon 1, Villeurbanne 69100</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
<orgName type="university">Université Claude Bernard Lyon1</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hanus, Jean Luc" sort="Hanus, Jean Luc" uniqKey="Hanus J" first="Jean-Luc" last="Hanus">Jean-Luc Hanus</name>
</author>
<author>
<name sortKey="Ferreira, Antoine" sort="Ferreira, Antoine" uniqKey="Ferreira A" first="Antoine" last="Ferreira">Antoine Ferreira</name>
</author>
</analytic>
<series>
<title level="j">IEEE transactions on bio-medical engineering</title>
<idno type="eISSN">1558-2531</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Biomechanical Phenomena</term>
<term>Cell Physiological Phenomena</term>
<term>Cytoskeleton (physiology)</term>
<term>Finite Element Analysis</term>
<term>Mice</term>
<term>Microinjections</term>
<term>Models, Biological</term>
<term>Nanotechnology (instrumentation)</term>
<term>Nanotechnology (methods)</term>
<term>Oocytes (cytology)</term>
<term>Oocytes (physiology)</term>
<term>Pressure</term>
<term>Single-Cell Analysis (methods)</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Oocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Nanotechnology</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Nanotechnology</term>
<term>Single-Cell Analysis</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cytoskeleton</term>
<term>Oocytes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biomechanical Phenomena</term>
<term>Cell Physiological Phenomena</term>
<term>Finite Element Analysis</term>
<term>Mice</term>
<term>Microinjections</term>
<term>Models, Biological</term>
<term>Pressure</term>
</keywords>
<keywords scheme="mix" xml:lang="en">
<term>Biomechanics</term>
<term>cell injection</term>
<term>finite element modeling</term>
<term>haptic interaction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">To facilitate training of biological cell injection operations, we are developing an interactive virtual environment to simulate needle insertion into biological cells. This paper presents methodologies for dynamic modeling, visual/haptic display, and model validation of cell injection. We first investigate the challenging issues in the modeling of the biomechanical properties of living cells. We propose two dynamic models to simulate cell deformation and puncture. The first approach is based on the assumptions that the mechanical response of living cells is mainly determined by the cytoskeleton and that the cytoskeleton is organized as a tensegrity structure including microfilaments, microtubules, and intermediate filaments. Equivalent microtubules struts are represented with a linear mass-tensor finite-element model and equivalent microfilaments and intermediate filaments with viscoelastic Kelvin-Voigt elements. The second modeling method assumes the overall cell as an homogeneous hyperelastic model (St, Venant-Kirchhoff). Both graphic and haptic rendering are provided in real time to the operator through a 3-D virtual environment. Simulated responses are compared to experimental data to show the effectiveness of the proposed physically based model.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
</region>
<orgName>
<li>Université Claude Bernard Lyon1</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Ferreira, Antoine" sort="Ferreira, Antoine" uniqKey="Ferreira A" first="Antoine" last="Ferreira">Antoine Ferreira</name>
<name sortKey="Hanus, Jean Luc" sort="Hanus, Jean Luc" uniqKey="Hanus J" first="Jean-Luc" last="Hanus">Jean-Luc Hanus</name>
</noCountry>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Ladjal, Hamid" sort="Ladjal, Hamid" uniqKey="Ladjal H" first="Hamid" last="Ladjal">Hamid Ladjal</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23613019
   |texte=   Micro-to-nano biomechanical modeling for assisted biological cell injection.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23613019" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024