Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Broadband waveguide quantum memory for entangled photons.

Identifieur interne : 000459 ( PubMed/Corpus ); précédent : 000458; suivant : 000460

Broadband waveguide quantum memory for entangled photons.

Auteurs : Erhan Saglamyurek ; Neil Sinclair ; Jeongwan Jin ; Joshua A. Slater ; Daniel Oblak ; Félix Bussières ; Mathew George ; Raimund Ricken ; Wolfgang Sohler ; Wolfgang Tittel

Source :

RBID : pubmed:21228775

Abstract

The reversible transfer of quantum states of light into and out of matter constitutes an important building block for future applications of quantum communication: it will allow the synchronization of quantum information, and the construction of quantum repeaters and quantum networks. Much effort has been devoted to the development of such quantum memories, the key property of which is the preservation of entanglement during storage. Here we report the reversible transfer of photon-photon entanglement into entanglement between a photon and a collective atomic excitation in a solid-state device. Towards this end, we employ a thulium-doped lithium niobate waveguide in conjunction with a photon-echo quantum memory protocol, and increase the spectral acceptance from the current maximum of 100 megahertz to 5 gigahertz. We assess the entanglement-preserving nature of our storage device through Bell inequality violations and by comparing the amount of entanglement contained in the detected photon pairs before and after the reversible transfer. These measurements show, within statistical error, a perfect mapping process. Our broadband quantum memory complements the family of robust, integrated lithium niobate devices. It simplifies frequency-matching of light with matter interfaces in advanced applications of quantum communication, bringing fully quantum-enabled networks a step closer.

DOI: 10.1038/nature09719
PubMed: 21228775

Links to Exploration step

pubmed:21228775

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Broadband waveguide quantum memory for entangled photons.</title>
<author>
<name sortKey="Saglamyurek, Erhan" sort="Saglamyurek, Erhan" uniqKey="Saglamyurek E" first="Erhan" last="Saglamyurek">Erhan Saglamyurek</name>
<affiliation>
<nlm:affiliation>Institute for Quantum Information Science, and Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sinclair, Neil" sort="Sinclair, Neil" uniqKey="Sinclair N" first="Neil" last="Sinclair">Neil Sinclair</name>
</author>
<author>
<name sortKey="Jin, Jeongwan" sort="Jin, Jeongwan" uniqKey="Jin J" first="Jeongwan" last="Jin">Jeongwan Jin</name>
</author>
<author>
<name sortKey="Slater, Joshua A" sort="Slater, Joshua A" uniqKey="Slater J" first="Joshua A" last="Slater">Joshua A. Slater</name>
</author>
<author>
<name sortKey="Oblak, Daniel" sort="Oblak, Daniel" uniqKey="Oblak D" first="Daniel" last="Oblak">Daniel Oblak</name>
</author>
<author>
<name sortKey="Bussieres, Felix" sort="Bussieres, Felix" uniqKey="Bussieres F" first="Félix" last="Bussières">Félix Bussières</name>
</author>
<author>
<name sortKey="George, Mathew" sort="George, Mathew" uniqKey="George M" first="Mathew" last="George">Mathew George</name>
</author>
<author>
<name sortKey="Ricken, Raimund" sort="Ricken, Raimund" uniqKey="Ricken R" first="Raimund" last="Ricken">Raimund Ricken</name>
</author>
<author>
<name sortKey="Sohler, Wolfgang" sort="Sohler, Wolfgang" uniqKey="Sohler W" first="Wolfgang" last="Sohler">Wolfgang Sohler</name>
</author>
<author>
<name sortKey="Tittel, Wolfgang" sort="Tittel, Wolfgang" uniqKey="Tittel W" first="Wolfgang" last="Tittel">Wolfgang Tittel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1038/nature09719</idno>
<idno type="RBID">pubmed:21228775</idno>
<idno type="pmid">21228775</idno>
<idno type="wicri:Area/PubMed/Corpus">000459</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000459</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Broadband waveguide quantum memory for entangled photons.</title>
<author>
<name sortKey="Saglamyurek, Erhan" sort="Saglamyurek, Erhan" uniqKey="Saglamyurek E" first="Erhan" last="Saglamyurek">Erhan Saglamyurek</name>
<affiliation>
<nlm:affiliation>Institute for Quantum Information Science, and Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Sinclair, Neil" sort="Sinclair, Neil" uniqKey="Sinclair N" first="Neil" last="Sinclair">Neil Sinclair</name>
</author>
<author>
<name sortKey="Jin, Jeongwan" sort="Jin, Jeongwan" uniqKey="Jin J" first="Jeongwan" last="Jin">Jeongwan Jin</name>
</author>
<author>
<name sortKey="Slater, Joshua A" sort="Slater, Joshua A" uniqKey="Slater J" first="Joshua A" last="Slater">Joshua A. Slater</name>
</author>
<author>
<name sortKey="Oblak, Daniel" sort="Oblak, Daniel" uniqKey="Oblak D" first="Daniel" last="Oblak">Daniel Oblak</name>
</author>
<author>
<name sortKey="Bussieres, Felix" sort="Bussieres, Felix" uniqKey="Bussieres F" first="Félix" last="Bussières">Félix Bussières</name>
</author>
<author>
<name sortKey="George, Mathew" sort="George, Mathew" uniqKey="George M" first="Mathew" last="George">Mathew George</name>
</author>
<author>
<name sortKey="Ricken, Raimund" sort="Ricken, Raimund" uniqKey="Ricken R" first="Raimund" last="Ricken">Raimund Ricken</name>
</author>
<author>
<name sortKey="Sohler, Wolfgang" sort="Sohler, Wolfgang" uniqKey="Sohler W" first="Wolfgang" last="Sohler">Wolfgang Sohler</name>
</author>
<author>
<name sortKey="Tittel, Wolfgang" sort="Tittel, Wolfgang" uniqKey="Tittel W" first="Wolfgang" last="Tittel">Wolfgang Tittel</name>
</author>
</analytic>
<series>
<title level="j">Nature</title>
<idno type="eISSN">1476-4687</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The reversible transfer of quantum states of light into and out of matter constitutes an important building block for future applications of quantum communication: it will allow the synchronization of quantum information, and the construction of quantum repeaters and quantum networks. Much effort has been devoted to the development of such quantum memories, the key property of which is the preservation of entanglement during storage. Here we report the reversible transfer of photon-photon entanglement into entanglement between a photon and a collective atomic excitation in a solid-state device. Towards this end, we employ a thulium-doped lithium niobate waveguide in conjunction with a photon-echo quantum memory protocol, and increase the spectral acceptance from the current maximum of 100 megahertz to 5 gigahertz. We assess the entanglement-preserving nature of our storage device through Bell inequality violations and by comparing the amount of entanglement contained in the detected photon pairs before and after the reversible transfer. These measurements show, within statistical error, a perfect mapping process. Our broadband quantum memory complements the family of robust, integrated lithium niobate devices. It simplifies frequency-matching of light with matter interfaces in advanced applications of quantum communication, bringing fully quantum-enabled networks a step closer.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">21228775</PMID>
<DateCreated>
<Year>2011</Year>
<Month>01</Month>
<Day>28</Day>
</DateCreated>
<DateCompleted>
<Year>2011</Year>
<Month>02</Month>
<Day>01</Day>
</DateCompleted>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1476-4687</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>469</Volume>
<Issue>7331</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jan</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>Nature</Title>
<ISOAbbreviation>Nature</ISOAbbreviation>
</Journal>
<ArticleTitle>Broadband waveguide quantum memory for entangled photons.</ArticleTitle>
<Pagination>
<MedlinePgn>512-5</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/nature09719</ELocationID>
<Abstract>
<AbstractText>The reversible transfer of quantum states of light into and out of matter constitutes an important building block for future applications of quantum communication: it will allow the synchronization of quantum information, and the construction of quantum repeaters and quantum networks. Much effort has been devoted to the development of such quantum memories, the key property of which is the preservation of entanglement during storage. Here we report the reversible transfer of photon-photon entanglement into entanglement between a photon and a collective atomic excitation in a solid-state device. Towards this end, we employ a thulium-doped lithium niobate waveguide in conjunction with a photon-echo quantum memory protocol, and increase the spectral acceptance from the current maximum of 100 megahertz to 5 gigahertz. We assess the entanglement-preserving nature of our storage device through Bell inequality violations and by comparing the amount of entanglement contained in the detected photon pairs before and after the reversible transfer. These measurements show, within statistical error, a perfect mapping process. Our broadband quantum memory complements the family of robust, integrated lithium niobate devices. It simplifies frequency-matching of light with matter interfaces in advanced applications of quantum communication, bringing fully quantum-enabled networks a step closer.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Saglamyurek</LastName>
<ForeName>Erhan</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Institute for Quantum Information Science, and Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sinclair</LastName>
<ForeName>Neil</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Jeongwan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Slater</LastName>
<ForeName>Joshua A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oblak</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bussières</LastName>
<ForeName>Félix</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>George</LastName>
<ForeName>Mathew</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ricken</LastName>
<ForeName>Raimund</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sohler</LastName>
<ForeName>Wolfgang</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tittel</LastName>
<ForeName>Wolfgang</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>01</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nature</MedlineTA>
<NlmUniqueID>0410462</NlmUniqueID>
<ISSNLinking>0028-0836</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Nature. 2011 Jan 27;469(7331):475-6</RefSource>
<PMID Version="1">21270880</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>9</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>12</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2011</Year>
<Month>1</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">nature09719</ArticleId>
<ArticleId IdType="doi">10.1038/nature09719</ArticleId>
<ArticleId IdType="pubmed">21228775</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000459 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000459 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:21228775
   |texte=   Broadband waveguide quantum memory for entangled photons.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:21228775" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a ThuliumV1 

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024