Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Magnetic properties of Tm–Zr multilayers

Identifieur interne : 002717 ( Main/Exploration ); précédent : 002716; suivant : 002718

Magnetic properties of Tm–Zr multilayers

Auteurs : A. Baudry [France] ; P. Boyer [France] ; M. Brunel [France]

Source :

RBID : ISTEX:ED039954EEDA7D88002F68629F607E671018296C

Descripteurs français

English descriptors

Abstract

Abstract: A 600Å film of thulium and Tm–Zr multilayers in which the Tm layers are separated by 30Å non-magnetic Zr layers were evaporated on superficially oxidized silicon substrates under ultra-vacuum conditions. The thickness of the Tm layers was varied between 8 and 30Å. X-ray diffraction gives evidence for a columnar growth along the c axis of the HCP structure, with in-plane compression of Tm layers thinner than 20Å. The magnetic structure of the film is quite similar to that of bulk Tm. On the contrary, the c-axis modulated antiferromagnetic phase which takes place in the film at TN≈54K is not observed in the multilayers. This phenomenon is preferentially attributed to an enhancement of the ferromagnetic coupling at the edges of the thulium layers, which favours a structure close to the squared 3–4 antiphase ferromagnetic arrangement of the magnetic moments displayed by the bulk below 30K. A marked trend to ferromagnetism is observed as the Tm layers become thinner. Contrary to that observed in Dy–Zr and Ho–Zr multilayers, the interface and volume anisotropies do not compensate each other for 8Å Tm layers. The c-axis magnetic anisotropy of Tm is preserved whatever the thickness of the Tm layers. The estimated anisotropies are compared with the results of point-charge crystal-field calculations.

Url:
DOI: 10.1016/S0304-8853(98)00026-2


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Magnetic properties of Tm–Zr multilayers</title>
<author>
<name sortKey="Baudry, A" sort="Baudry, A" uniqKey="Baudry A" first="A" last="Baudry">A. Baudry</name>
</author>
<author>
<name sortKey="Boyer, P" sort="Boyer, P" uniqKey="Boyer P" first="P" last="Boyer">P. Boyer</name>
</author>
<author>
<name sortKey="Brunel, M" sort="Brunel, M" uniqKey="Brunel M" first="M" last="Brunel">M. Brunel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:ED039954EEDA7D88002F68629F607E671018296C</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1016/S0304-8853(98)00026-2</idno>
<idno type="url">https://api.istex.fr/document/ED039954EEDA7D88002F68629F607E671018296C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003419</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003419</idno>
<idno type="wicri:Area/Istex/Curation">003419</idno>
<idno type="wicri:Area/Istex/Checkpoint">000C92</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000C92</idno>
<idno type="wicri:doubleKey">0304-8853:1998:Baudry A:magnetic:properties:of</idno>
<idno type="wicri:Area/Main/Merge">002883</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:98-0297284</idno>
<idno type="wicri:Area/Pascal/Corpus">001179</idno>
<idno type="wicri:Area/Pascal/Curation">001179</idno>
<idno type="wicri:Area/Pascal/Checkpoint">001187</idno>
<idno type="wicri:explorRef" wicri:stream="Pascal" wicri:step="Checkpoint">001187</idno>
<idno type="wicri:doubleKey">0304-8853:1998:Baudry A:magnetic:properties:of</idno>
<idno type="wicri:Area/Main/Merge">002A20</idno>
<idno type="wicri:Area/Main/Curation">002717</idno>
<idno type="wicri:Area/Main/Exploration">002717</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Magnetic properties of Tm–Zr multilayers</title>
<author>
<name sortKey="Baudry, A" sort="Baudry, A" uniqKey="Baudry A" first="A" last="Baudry">A. Baudry</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
<affiliation></affiliation>
</author>
<author>
<name sortKey="Boyer, P" sort="Boyer, P" uniqKey="Boyer P" first="P" last="Boyer">P. Boyer</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9</wicri:regionArea>
<wicri:noRegion>38054 Grenoble Cedex 9</wicri:noRegion>
<wicri:noRegion>38054 Grenoble Cedex 9</wicri:noRegion>
</affiliation>
<affiliation></affiliation>
<affiliation wicri:level="3">
<country>France</country>
<placeName>
<settlement type="city">Grenoble</settlement>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Rhône-Alpes</region>
</placeName>
<wicri:orgArea>2 Affiliated to Université Joseph Fourier</wicri:orgArea>
</affiliation>
</author>
<author>
<name sortKey="Brunel, M" sort="Brunel, M" uniqKey="Brunel M" first="M" last="Brunel">M. Brunel</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble Cedex 9</wicri:regionArea>
<wicri:noRegion>38042 Grenoble Cedex 9</wicri:noRegion>
<wicri:noRegion>38042 Grenoble Cedex 9</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Magnetism and Magnetic Materials</title>
<title level="j" type="abbrev">MAGMA</title>
<idno type="ISSN">0304-8853</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998">1998</date>
<biblScope unit="volume">185</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="309">309</biblScope>
<biblScope unit="page" to="321">321</biblScope>
</imprint>
<idno type="ISSN">0304-8853</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0304-8853</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anisotropy</term>
<term>Antiferromagnetic phase</term>
<term>Antiphase</term>
<term>Antiphase ferrimagnetic structure</term>
<term>Atomic planes</term>
<term>Basal</term>
<term>Basal plane</term>
<term>Basal plane lattice parameter</term>
<term>Baudry</term>
<term>Bragg</term>
<term>Bragg pattern</term>
<term>Bragg patterns</term>
<term>Bulk holmium</term>
<term>Bulk thulium</term>
<term>Bulk value</term>
<term>Charge ratio</term>
<term>Coherence length</term>
<term>Columnar growth</term>
<term>Compensation thickness</term>
<term>Conduction electrons</term>
<term>Crude model</term>
<term>Deposition process</term>
<term>Electron microscopy</term>
<term>Elsevier science</term>
<term>Energy levels</term>
<term>Epitaxial</term>
<term>Epitaxial conditions</term>
<term>Epitaxial growth</term>
<term>Epitaxial strains</term>
<term>Exchange interaction</term>
<term>Experimental data</term>
<term>Experimental study</term>
<term>Ferromagnetic</term>
<term>Ferromagnetic order</term>
<term>Grenoble cedex</term>
<term>Growth direction</term>
<term>Hexagonal lattices</term>
<term>Hexagonal symmetry</term>
<term>Hysteresis</term>
<term>Hysteresis loops</term>
<term>Inplane coherence length</term>
<term>Interface</term>
<term>Interface anisotropy</term>
<term>Interface contributions</term>
<term>Large uncertainty</term>
<term>Lateral</term>
<term>Lateral compression</term>
<term>Lateral size</term>
<term>Lateral strain</term>
<term>Lattice</term>
<term>Lattice mismatch</term>
<term>Lattice parameter</term>
<term>Layer</term>
<term>Layer thickness</term>
<term>Magn</term>
<term>Magnetic anisotropy</term>
<term>Magnetic isotherm</term>
<term>Magnetic materials</term>
<term>Magnetic moment</term>
<term>Magnetic moments</term>
<term>Magnetic phase diagram</term>
<term>Magnetic properties</term>
<term>Magnetic structure</term>
<term>Magnetization</term>
<term>Magnetization curve</term>
<term>Magnetization curves</term>
<term>Magnetization isotherms</term>
<term>Magnetization process</term>
<term>Magnetoelastic energy</term>
<term>Metamagnetic behaviour</term>
<term>Multilayer</term>
<term>Multilayers</term>
<term>Neel point</term>
<term>Other hand</term>
<term>Outer planes</term>
<term>Periodic strain</term>
<term>Periodic structure</term>
<term>Perpendicular</term>
<term>Perpendicular anisotropy</term>
<term>Phys</term>
<term>Several multilayers</term>
<term>Sharp interfaces</term>
<term>Squared antiphase structure</term>
<term>Temperature dependence</term>
<term>Thulium</term>
<term>Thulium layer</term>
<term>Thulium layers</term>
<term>Unmiscible elements</term>
<term>Usual expression</term>
<term>Volume anisotropies</term>
<term>Volume anisotropy</term>
<term>Zirconium</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7570C</term>
<term>Aimantation</term>
<term>Anisotropie magnétique</term>
<term>Etude expérimentale</term>
<term>Hystérésis</term>
<term>Multicouche</term>
<term>Structure magnétique</term>
<term>Thulium</term>
<term>Tm</term>
<term>Zirconium</term>
<term>Zr</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Anisotropy</term>
<term>Antiferromagnetic phase</term>
<term>Antiphase</term>
<term>Antiphase ferrimagnetic structure</term>
<term>Atomic planes</term>
<term>Basal</term>
<term>Basal plane</term>
<term>Basal plane lattice parameter</term>
<term>Baudry</term>
<term>Bragg</term>
<term>Bragg pattern</term>
<term>Bragg patterns</term>
<term>Bulk holmium</term>
<term>Bulk thulium</term>
<term>Bulk value</term>
<term>Charge ratio</term>
<term>Coherence length</term>
<term>Columnar growth</term>
<term>Compensation thickness</term>
<term>Conduction electrons</term>
<term>Crude model</term>
<term>Deposition process</term>
<term>Electron microscopy</term>
<term>Elsevier science</term>
<term>Energy levels</term>
<term>Epitaxial</term>
<term>Epitaxial conditions</term>
<term>Epitaxial growth</term>
<term>Epitaxial strains</term>
<term>Exchange interaction</term>
<term>Experimental data</term>
<term>Ferromagnetic</term>
<term>Ferromagnetic order</term>
<term>Grenoble cedex</term>
<term>Growth direction</term>
<term>Hexagonal lattices</term>
<term>Hexagonal symmetry</term>
<term>Hysteresis</term>
<term>Hysteresis loops</term>
<term>Inplane coherence length</term>
<term>Interface</term>
<term>Interface anisotropy</term>
<term>Interface contributions</term>
<term>Large uncertainty</term>
<term>Lateral</term>
<term>Lateral compression</term>
<term>Lateral size</term>
<term>Lateral strain</term>
<term>Lattice</term>
<term>Lattice mismatch</term>
<term>Lattice parameter</term>
<term>Layer</term>
<term>Layer thickness</term>
<term>Magn</term>
<term>Magnetic anisotropy</term>
<term>Magnetic isotherm</term>
<term>Magnetic materials</term>
<term>Magnetic moment</term>
<term>Magnetic moments</term>
<term>Magnetic phase diagram</term>
<term>Magnetic properties</term>
<term>Magnetic structure</term>
<term>Magnetization</term>
<term>Magnetization curve</term>
<term>Magnetization curves</term>
<term>Magnetization isotherms</term>
<term>Magnetization process</term>
<term>Magnetoelastic energy</term>
<term>Metamagnetic behaviour</term>
<term>Multilayer</term>
<term>Multilayers</term>
<term>Neel point</term>
<term>Other hand</term>
<term>Outer planes</term>
<term>Periodic strain</term>
<term>Periodic structure</term>
<term>Perpendicular</term>
<term>Perpendicular anisotropy</term>
<term>Phys</term>
<term>Several multilayers</term>
<term>Sharp interfaces</term>
<term>Squared antiphase structure</term>
<term>Temperature dependence</term>
<term>Thulium</term>
<term>Thulium layer</term>
<term>Thulium layers</term>
<term>Unmiscible elements</term>
<term>Usual expression</term>
<term>Volume anisotropies</term>
<term>Volume anisotropy</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A 600Å film of thulium and Tm–Zr multilayers in which the Tm layers are separated by 30Å non-magnetic Zr layers were evaporated on superficially oxidized silicon substrates under ultra-vacuum conditions. The thickness of the Tm layers was varied between 8 and 30Å. X-ray diffraction gives evidence for a columnar growth along the c axis of the HCP structure, with in-plane compression of Tm layers thinner than 20Å. The magnetic structure of the film is quite similar to that of bulk Tm. On the contrary, the c-axis modulated antiferromagnetic phase which takes place in the film at TN≈54K is not observed in the multilayers. This phenomenon is preferentially attributed to an enhancement of the ferromagnetic coupling at the edges of the thulium layers, which favours a structure close to the squared 3–4 antiphase ferromagnetic arrangement of the magnetic moments displayed by the bulk below 30K. A marked trend to ferromagnetism is observed as the Tm layers become thinner. Contrary to that observed in Dy–Zr and Ho–Zr multilayers, the interface and volume anisotropies do not compensate each other for 8Å Tm layers. The c-axis magnetic anisotropy of Tm is preserved whatever the thickness of the Tm layers. The estimated anisotropies are compared with the results of point-charge crystal-field calculations.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>Grenoble</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Baudry, A" sort="Baudry, A" uniqKey="Baudry A" first="A" last="Baudry">A. Baudry</name>
</region>
<name sortKey="Boyer, P" sort="Boyer, P" uniqKey="Boyer P" first="P" last="Boyer">P. Boyer</name>
<name sortKey="Boyer, P" sort="Boyer, P" uniqKey="Boyer P" first="P" last="Boyer">P. Boyer</name>
<name sortKey="Brunel, M" sort="Brunel, M" uniqKey="Brunel M" first="M" last="Brunel">M. Brunel</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002717 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002717 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:ED039954EEDA7D88002F68629F607E671018296C
   |texte=   Magnetic properties of Tm–Zr multilayers
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024