Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Magnetic properties of Tm–Zr multilayers

Identifieur interne : 003419 ( Istex/Corpus ); précédent : 003418; suivant : 003420

Magnetic properties of Tm–Zr multilayers

Auteurs : A. Baudry ; P. Boyer ; M. Brunel

Source :

RBID : ISTEX:ED039954EEDA7D88002F68629F607E671018296C

English descriptors

Abstract

Abstract: A 600Å film of thulium and Tm–Zr multilayers in which the Tm layers are separated by 30Å non-magnetic Zr layers were evaporated on superficially oxidized silicon substrates under ultra-vacuum conditions. The thickness of the Tm layers was varied between 8 and 30Å. X-ray diffraction gives evidence for a columnar growth along the c axis of the HCP structure, with in-plane compression of Tm layers thinner than 20Å. The magnetic structure of the film is quite similar to that of bulk Tm. On the contrary, the c-axis modulated antiferromagnetic phase which takes place in the film at TN≈54K is not observed in the multilayers. This phenomenon is preferentially attributed to an enhancement of the ferromagnetic coupling at the edges of the thulium layers, which favours a structure close to the squared 3–4 antiphase ferromagnetic arrangement of the magnetic moments displayed by the bulk below 30K. A marked trend to ferromagnetism is observed as the Tm layers become thinner. Contrary to that observed in Dy–Zr and Ho–Zr multilayers, the interface and volume anisotropies do not compensate each other for 8Å Tm layers. The c-axis magnetic anisotropy of Tm is preserved whatever the thickness of the Tm layers. The estimated anisotropies are compared with the results of point-charge crystal-field calculations.

Url:
DOI: 10.1016/S0304-8853(98)00026-2

Links to Exploration step

ISTEX:ED039954EEDA7D88002F68629F607E671018296C

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Magnetic properties of Tm–Zr multilayers</title>
<author>
<name sortKey="Baudry, A" sort="Baudry, A" uniqKey="Baudry A" first="A" last="Baudry">A. Baudry</name>
<affiliation>
<mods:affiliation>Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>1 Affiliated to the CNRS.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boyer, P" sort="Boyer, P" uniqKey="Boyer P" first="P" last="Boyer">P. Boyer</name>
<affiliation>
<mods:affiliation>Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Corresponding author.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>2 Affiliated to Université Joseph Fourier, Grenoble.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brunel, M" sort="Brunel, M" uniqKey="Brunel M" first="M" last="Brunel">M. Brunel</name>
<affiliation>
<mods:affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble Cedex 9, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:ED039954EEDA7D88002F68629F607E671018296C</idno>
<date when="1998" year="1998">1998</date>
<idno type="doi">10.1016/S0304-8853(98)00026-2</idno>
<idno type="url">https://api.istex.fr/document/ED039954EEDA7D88002F68629F607E671018296C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">003419</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">003419</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Magnetic properties of Tm–Zr multilayers</title>
<author>
<name sortKey="Baudry, A" sort="Baudry, A" uniqKey="Baudry A" first="A" last="Baudry">A. Baudry</name>
<affiliation>
<mods:affiliation>Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>1 Affiliated to the CNRS.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boyer, P" sort="Boyer, P" uniqKey="Boyer P" first="P" last="Boyer">P. Boyer</name>
<affiliation>
<mods:affiliation>Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Corresponding author.</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>2 Affiliated to Université Joseph Fourier, Grenoble.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brunel, M" sort="Brunel, M" uniqKey="Brunel M" first="M" last="Brunel">M. Brunel</name>
<affiliation>
<mods:affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble Cedex 9, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Magnetism and Magnetic Materials</title>
<title level="j" type="abbrev">MAGMA</title>
<idno type="ISSN">0304-8853</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998">1998</date>
<biblScope unit="volume">185</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="309">309</biblScope>
<biblScope unit="page" to="321">321</biblScope>
</imprint>
<idno type="ISSN">0304-8853</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0304-8853</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anisotropy</term>
<term>Antiferromagnetic phase</term>
<term>Antiphase</term>
<term>Antiphase ferrimagnetic structure</term>
<term>Atomic planes</term>
<term>Basal</term>
<term>Basal plane</term>
<term>Basal plane lattice parameter</term>
<term>Baudry</term>
<term>Bragg</term>
<term>Bragg pattern</term>
<term>Bragg patterns</term>
<term>Bulk holmium</term>
<term>Bulk thulium</term>
<term>Bulk value</term>
<term>Charge ratio</term>
<term>Coherence length</term>
<term>Columnar growth</term>
<term>Compensation thickness</term>
<term>Conduction electrons</term>
<term>Crude model</term>
<term>Deposition process</term>
<term>Electron microscopy</term>
<term>Elsevier science</term>
<term>Energy levels</term>
<term>Epitaxial</term>
<term>Epitaxial conditions</term>
<term>Epitaxial growth</term>
<term>Epitaxial strains</term>
<term>Exchange interaction</term>
<term>Experimental data</term>
<term>Ferromagnetic</term>
<term>Ferromagnetic order</term>
<term>Grenoble cedex</term>
<term>Growth direction</term>
<term>Hexagonal lattices</term>
<term>Hexagonal symmetry</term>
<term>Hysteresis</term>
<term>Hysteresis loops</term>
<term>Inplane coherence length</term>
<term>Interface</term>
<term>Interface anisotropy</term>
<term>Interface contributions</term>
<term>Large uncertainty</term>
<term>Lateral</term>
<term>Lateral compression</term>
<term>Lateral size</term>
<term>Lateral strain</term>
<term>Lattice</term>
<term>Lattice mismatch</term>
<term>Lattice parameter</term>
<term>Layer</term>
<term>Layer thickness</term>
<term>Magn</term>
<term>Magnetic anisotropy</term>
<term>Magnetic isotherm</term>
<term>Magnetic materials</term>
<term>Magnetic moment</term>
<term>Magnetic moments</term>
<term>Magnetic phase diagram</term>
<term>Magnetic properties</term>
<term>Magnetic structure</term>
<term>Magnetization</term>
<term>Magnetization curve</term>
<term>Magnetization curves</term>
<term>Magnetization isotherms</term>
<term>Magnetization process</term>
<term>Magnetoelastic energy</term>
<term>Metamagnetic behaviour</term>
<term>Multilayer</term>
<term>Multilayers</term>
<term>Neel point</term>
<term>Other hand</term>
<term>Outer planes</term>
<term>Periodic strain</term>
<term>Periodic structure</term>
<term>Perpendicular</term>
<term>Perpendicular anisotropy</term>
<term>Phys</term>
<term>Several multilayers</term>
<term>Sharp interfaces</term>
<term>Squared antiphase structure</term>
<term>Temperature dependence</term>
<term>Thulium</term>
<term>Thulium layer</term>
<term>Thulium layers</term>
<term>Unmiscible elements</term>
<term>Usual expression</term>
<term>Volume anisotropies</term>
<term>Volume anisotropy</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Anisotropy</term>
<term>Antiferromagnetic phase</term>
<term>Antiphase</term>
<term>Antiphase ferrimagnetic structure</term>
<term>Atomic planes</term>
<term>Basal</term>
<term>Basal plane</term>
<term>Basal plane lattice parameter</term>
<term>Baudry</term>
<term>Bragg</term>
<term>Bragg pattern</term>
<term>Bragg patterns</term>
<term>Bulk holmium</term>
<term>Bulk thulium</term>
<term>Bulk value</term>
<term>Charge ratio</term>
<term>Coherence length</term>
<term>Columnar growth</term>
<term>Compensation thickness</term>
<term>Conduction electrons</term>
<term>Crude model</term>
<term>Deposition process</term>
<term>Electron microscopy</term>
<term>Elsevier science</term>
<term>Energy levels</term>
<term>Epitaxial</term>
<term>Epitaxial conditions</term>
<term>Epitaxial growth</term>
<term>Epitaxial strains</term>
<term>Exchange interaction</term>
<term>Experimental data</term>
<term>Ferromagnetic</term>
<term>Ferromagnetic order</term>
<term>Grenoble cedex</term>
<term>Growth direction</term>
<term>Hexagonal lattices</term>
<term>Hexagonal symmetry</term>
<term>Hysteresis</term>
<term>Hysteresis loops</term>
<term>Inplane coherence length</term>
<term>Interface</term>
<term>Interface anisotropy</term>
<term>Interface contributions</term>
<term>Large uncertainty</term>
<term>Lateral</term>
<term>Lateral compression</term>
<term>Lateral size</term>
<term>Lateral strain</term>
<term>Lattice</term>
<term>Lattice mismatch</term>
<term>Lattice parameter</term>
<term>Layer</term>
<term>Layer thickness</term>
<term>Magn</term>
<term>Magnetic anisotropy</term>
<term>Magnetic isotherm</term>
<term>Magnetic materials</term>
<term>Magnetic moment</term>
<term>Magnetic moments</term>
<term>Magnetic phase diagram</term>
<term>Magnetic properties</term>
<term>Magnetic structure</term>
<term>Magnetization</term>
<term>Magnetization curve</term>
<term>Magnetization curves</term>
<term>Magnetization isotherms</term>
<term>Magnetization process</term>
<term>Magnetoelastic energy</term>
<term>Metamagnetic behaviour</term>
<term>Multilayer</term>
<term>Multilayers</term>
<term>Neel point</term>
<term>Other hand</term>
<term>Outer planes</term>
<term>Periodic strain</term>
<term>Periodic structure</term>
<term>Perpendicular</term>
<term>Perpendicular anisotropy</term>
<term>Phys</term>
<term>Several multilayers</term>
<term>Sharp interfaces</term>
<term>Squared antiphase structure</term>
<term>Temperature dependence</term>
<term>Thulium</term>
<term>Thulium layer</term>
<term>Thulium layers</term>
<term>Unmiscible elements</term>
<term>Usual expression</term>
<term>Volume anisotropies</term>
<term>Volume anisotropy</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: A 600Å film of thulium and Tm–Zr multilayers in which the Tm layers are separated by 30Å non-magnetic Zr layers were evaporated on superficially oxidized silicon substrates under ultra-vacuum conditions. The thickness of the Tm layers was varied between 8 and 30Å. X-ray diffraction gives evidence for a columnar growth along the c axis of the HCP structure, with in-plane compression of Tm layers thinner than 20Å. The magnetic structure of the film is quite similar to that of bulk Tm. On the contrary, the c-axis modulated antiferromagnetic phase which takes place in the film at TN≈54K is not observed in the multilayers. This phenomenon is preferentially attributed to an enhancement of the ferromagnetic coupling at the edges of the thulium layers, which favours a structure close to the squared 3–4 antiphase ferromagnetic arrangement of the magnetic moments displayed by the bulk below 30K. A marked trend to ferromagnetism is observed as the Tm layers become thinner. Contrary to that observed in Dy–Zr and Ho–Zr multilayers, the interface and volume anisotropies do not compensate each other for 8Å Tm layers. The c-axis magnetic anisotropy of Tm is preserved whatever the thickness of the Tm layers. The estimated anisotropies are compared with the results of point-charge crystal-field calculations.</div>
</front>
</TEI>
<istex>
<corpusName>elsevier</corpusName>
<keywords>
<teeft>
<json:string>multilayers</json:string>
<json:string>magnetization</json:string>
<json:string>thulium</json:string>
<json:string>anisotropy</json:string>
<json:string>multilayer</json:string>
<json:string>baudry</json:string>
<json:string>magn</json:string>
<json:string>phys</json:string>
<json:string>magnetic materials</json:string>
<json:string>magnetic anisotropy</json:string>
<json:string>epitaxial</json:string>
<json:string>antiphase</json:string>
<json:string>bulk thulium</json:string>
<json:string>magnetic moments</json:string>
<json:string>thulium layers</json:string>
<json:string>hysteresis</json:string>
<json:string>magnetization curves</json:string>
<json:string>basal</json:string>
<json:string>atomic planes</json:string>
<json:string>other hand</json:string>
<json:string>magnetic moment</json:string>
<json:string>interface</json:string>
<json:string>layer thickness</json:string>
<json:string>magnetic structure</json:string>
<json:string>basal plane</json:string>
<json:string>epitaxial growth</json:string>
<json:string>experimental data</json:string>
<json:string>interface anisotropy</json:string>
<json:string>volume anisotropies</json:string>
<json:string>hysteresis loops</json:string>
<json:string>lattice</json:string>
<json:string>lateral</json:string>
<json:string>bragg pattern</json:string>
<json:string>magnetic properties</json:string>
<json:string>large uncertainty</json:string>
<json:string>magnetoelastic energy</json:string>
<json:string>conduction electrons</json:string>
<json:string>epitaxial strains</json:string>
<json:string>ferromagnetic order</json:string>
<json:string>growth direction</json:string>
<json:string>several multilayers</json:string>
<json:string>bulk value</json:string>
<json:string>layer</json:string>
<json:string>bragg</json:string>
<json:string>perpendicular</json:string>
<json:string>ferromagnetic</json:string>
<json:string>usual expression</json:string>
<json:string>unmiscible elements</json:string>
<json:string>neel point</json:string>
<json:string>volume anisotropy</json:string>
<json:string>electron microscopy</json:string>
<json:string>perpendicular anisotropy</json:string>
<json:string>hexagonal lattices</json:string>
<json:string>deposition process</json:string>
<json:string>elsevier science</json:string>
<json:string>lattice mismatch</json:string>
<json:string>inplane coherence length</json:string>
<json:string>lateral size</json:string>
<json:string>bragg patterns</json:string>
<json:string>metamagnetic behaviour</json:string>
<json:string>periodic structure</json:string>
<json:string>columnar growth</json:string>
<json:string>basal plane lattice parameter</json:string>
<json:string>lattice parameter</json:string>
<json:string>thulium layer</json:string>
<json:string>lateral strain</json:string>
<json:string>crude model</json:string>
<json:string>temperature dependence</json:string>
<json:string>magnetic phase diagram</json:string>
<json:string>magnetic isotherm</json:string>
<json:string>antiphase ferrimagnetic structure</json:string>
<json:string>sharp interfaces</json:string>
<json:string>magnetization curve</json:string>
<json:string>squared antiphase structure</json:string>
<json:string>lateral compression</json:string>
<json:string>magnetization isotherms</json:string>
<json:string>exchange interaction</json:string>
<json:string>outer planes</json:string>
<json:string>periodic strain</json:string>
<json:string>energy levels</json:string>
<json:string>bulk holmium</json:string>
<json:string>hexagonal symmetry</json:string>
<json:string>epitaxial conditions</json:string>
<json:string>magnetization process</json:string>
<json:string>interface contributions</json:string>
<json:string>compensation thickness</json:string>
<json:string>charge ratio</json:string>
<json:string>antiferromagnetic phase</json:string>
<json:string>grenoble cedex</json:string>
<json:string>coherence length</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>A Baudry</name>
<affiliations>
<json:string>Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France</json:string>
<json:string>1 Affiliated to the CNRS.</json:string>
</affiliations>
</json:item>
<json:item>
<name>P Boyer</name>
<affiliations>
<json:string>Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France</json:string>
<json:string>Corresponding author.</json:string>
<json:string>2 Affiliated to Université Joseph Fourier, Grenoble.</json:string>
</affiliations>
</json:item>
<json:item>
<name>M Brunel</name>
<affiliations>
<json:string>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble Cedex 9, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Magnetic multilayers</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Rare earths</value>
</json:item>
</subject>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>Full-length article</json:string>
</originalGenre>
<abstract>A 600Å film of thulium and Tm–Zr multilayers in which the Tm layers are separated by 30Å non-magnetic Zr layers were evaporated on superficially oxidized silicon substrates under ultra-vacuum conditions. The thickness of the Tm layers was varied between 8 and 30Å. X-ray diffraction gives evidence for a columnar growth along the c axis of the HCP structure, with in-plane compression of Tm layers thinner than 20Å. The magnetic structure of the film is quite similar to that of bulk Tm. On the contrary, the c-axis modulated antiferromagnetic phase which takes place in the film at TN≈54K is not observed in the multilayers. This phenomenon is preferentially attributed to an enhancement of the ferromagnetic coupling at the edges of the thulium layers, which favours a structure close to the squared 3–4 antiphase ferromagnetic arrangement of the magnetic moments displayed by the bulk below 30K. A marked trend to ferromagnetism is observed as the Tm layers become thinner. Contrary to that observed in Dy–Zr and Ho–Zr multilayers, the interface and volume anisotropies do not compensate each other for 8Å Tm layers. The c-axis magnetic anisotropy of Tm is preserved whatever the thickness of the Tm layers. The estimated anisotropies are compared with the results of point-charge crystal-field calculations.</abstract>
<qualityIndicators>
<score>7.484</score>
<pdfVersion>1.2</pdfVersion>
<pdfPageSize>504 x 679 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>2</keywordCount>
<abstractCharCount>1311</abstractCharCount>
<pdfWordCount>6583</pdfWordCount>
<pdfCharCount>38058</pdfCharCount>
<pdfPageCount>13</pdfPageCount>
<abstractWordCount>207</abstractWordCount>
</qualityIndicators>
<title>Magnetic properties of Tm–Zr multilayers</title>
<pii>
<json:string>S0304-8853(98)00026-2</json:string>
</pii>
<genre>
<json:string>research-article</json:string>
</genre>
<host>
<title>Journal of Magnetism and Magnetic Materials</title>
<language>
<json:string>unknown</json:string>
</language>
<publicationDate>1998</publicationDate>
<issn>
<json:string>0304-8853</json:string>
</issn>
<pii>
<json:string>S0304-8853(00)X0067-4</json:string>
</pii>
<volume>185</volume>
<issue>3</issue>
<pages>
<first>309</first>
<last>321</last>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>physics, condensed matter</json:string>
<json:string>materials science, multidisciplinary</json:string>
</wos>
<scienceMetrix>
<json:string>natural sciences</json:string>
<json:string>physics & astronomy</json:string>
<json:string>applied physics</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences exactes et technologie</json:string>
<json:string>physique</json:string>
<json:string>etat condense: structure electronique, proprietes electriques, magnetiques et optiques</json:string>
</inist>
</categories>
<publicationDate>1998</publicationDate>
<copyrightDate>1998</copyrightDate>
<doi>
<json:string>10.1016/S0304-8853(98)00026-2</json:string>
</doi>
<id>ED039954EEDA7D88002F68629F607E671018296C</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/ED039954EEDA7D88002F68629F607E671018296C/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/ED039954EEDA7D88002F68629F607E671018296C/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/ED039954EEDA7D88002F68629F607E671018296C/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a">Magnetic properties of Tm–Zr multilayers</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>ELSEVIER</publisher>
<availability>
<p>©1998 Elsevier Science B.V.</p>
</availability>
<date>1998</date>
</publicationStmt>
<notesStmt>
<note type="content">Fig. 1: X-ray Bragg patterns obtained from a θ–2θ scan around the (0002) reflections of Tm and Zr in two Tm–Zr multilayers (radiation wavelength=λCu).</note>
<note type="content">Fig. 2: Typical rocking curve recorded for a Tm–Zr multilayer. The θ scan was performed with 2θ fixed at the position of a line of the (0002) Bragg reflection pattern.</note>
<note type="content">Fig. 3: Typical in-plane diffraction pattern recorded under grazing incidence in a Tm–Zr multilayer. No lines are detected in the intermediate range 35°⩽2θ⩽50°. Bragg reflections from (hk0) atomic planes only can be observed.</note>
<note type="content">Fig. 4: Variation of the basal plane lattice parameter a of Tm against the thickness of the thulium layer in Tm–Zr multilayers. The values of a are deduced from the acurate determination of the position of the [100] Bragg reflection measured under grazing incidence. The horizontal dotted line indicates the value for bulk Tm.</note>
<note type="content">Fig. 5: Zero-field cooled field-cooled magnetization curves measured in the 600Å thick Tm film and the Tm(30Å)/Zr(30Å) multilayer. The applied magnetic field (500Oe) is perpendicular to the plane of the layers.</note>
<note type="content">Fig. 6: Magnetization curves measured at 8K in the Tm film (top) and several Tm–Zr multilayers: [Tm(30Å)/Zr(30Å)]20, [Tm(15Å)/Zr(30Å)]20 and [Tm(8Å)/Zr(30Å)]20 (bottom). The applied magnetic field is perpendicular to the film.</note>
<note type="content">Fig. 7: Perpendicular susceptibility in the Tm film and in two multilayers: [Tm(30Å)/Zr(30Å)]20 and [Tm(15Å)/Zr(30Å)]20.</note>
<note type="content">Fig. 8: Hysteresis loops measured at 8K in the Tm film (600Å) and several Tm/Zr multilayers.</note>
<note type="content">Fig. 9: Plot of the magnetic anisotropy measured in Tm–Zr(30Å) (○) and Ho–Zr(30Å) (▵) multilayers, against the thickness of the rare-earth layers. The interrupted lines are the results of crystal-field calculations performed for the Tm–Zr multilayers within the point-charge approximation. The charges affected to the Tm and Zr ions are indicated in the figure. The full line is the result of similar calculations for Ho–Zr multilayers, with Q(Ho)=0.3 and Q(Zr)=0.4 in proton charge unit.</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a">Magnetic properties of Tm–Zr multilayers</title>
<author xml:id="author-0000">
<persName>
<forename type="first">A</forename>
<surname>Baudry</surname>
</persName>
<affiliation>Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France</affiliation>
<affiliation>1 Affiliated to the CNRS.</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">P</forename>
<surname>Boyer</surname>
</persName>
<affiliation>Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France</affiliation>
<affiliation>Corresponding author.</affiliation>
<affiliation>2 Affiliated to Université Joseph Fourier, Grenoble.</affiliation>
</author>
<author xml:id="author-0002">
<persName>
<forename type="first">M</forename>
<surname>Brunel</surname>
</persName>
<affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble Cedex 9, France</affiliation>
</author>
<idno type="istex">ED039954EEDA7D88002F68629F607E671018296C</idno>
<idno type="DOI">10.1016/S0304-8853(98)00026-2</idno>
<idno type="PII">S0304-8853(98)00026-2</idno>
</analytic>
<monogr>
<title level="j">Journal of Magnetism and Magnetic Materials</title>
<title level="j" type="abbrev">MAGMA</title>
<idno type="pISSN">0304-8853</idno>
<idno type="PII">S0304-8853(00)X0067-4</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1998"></date>
<biblScope unit="volume">185</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="309">309</biblScope>
<biblScope unit="page" to="321">321</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>1998</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>A 600Å film of thulium and Tm–Zr multilayers in which the Tm layers are separated by 30Å non-magnetic Zr layers were evaporated on superficially oxidized silicon substrates under ultra-vacuum conditions. The thickness of the Tm layers was varied between 8 and 30Å. X-ray diffraction gives evidence for a columnar growth along the c axis of the HCP structure, with in-plane compression of Tm layers thinner than 20Å. The magnetic structure of the film is quite similar to that of bulk Tm. On the contrary, the c-axis modulated antiferromagnetic phase which takes place in the film at TN≈54K is not observed in the multilayers. This phenomenon is preferentially attributed to an enhancement of the ferromagnetic coupling at the edges of the thulium layers, which favours a structure close to the squared 3–4 antiphase ferromagnetic arrangement of the magnetic moments displayed by the bulk below 30K. A marked trend to ferromagnetism is observed as the Tm layers become thinner. Contrary to that observed in Dy–Zr and Ho–Zr multilayers, the interface and volume anisotropies do not compensate each other for 8Å Tm layers. The c-axis magnetic anisotropy of Tm is preserved whatever the thickness of the Tm layers. The estimated anisotropies are compared with the results of point-charge crystal-field calculations.</p>
</abstract>
<textClass>
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>Magnetic multilayers</term>
</item>
<item>
<term>Rare earths</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="1997-12-18">Modified</change>
<change when="1998">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/ED039954EEDA7D88002F68629F607E671018296C/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Elsevier, elements deleted: ce:floats; body; tail">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//ES//DTD journal article DTD version 4.5.2//EN//XML" URI="art452.dtd" name="istex:docType">
<istex:entity SYSTEM="gr1" NDATA="IMAGE" name="gr1"></istex:entity>
<istex:entity SYSTEM="gr2" NDATA="IMAGE" name="gr2"></istex:entity>
<istex:entity SYSTEM="gr3" NDATA="IMAGE" name="gr3"></istex:entity>
<istex:entity SYSTEM="gr4" NDATA="IMAGE" name="gr4"></istex:entity>
<istex:entity SYSTEM="gr5" NDATA="IMAGE" name="gr5"></istex:entity>
<istex:entity SYSTEM="gr6" NDATA="IMAGE" name="gr6"></istex:entity>
<istex:entity SYSTEM="gr7" NDATA="IMAGE" name="gr7"></istex:entity>
<istex:entity SYSTEM="gr8" NDATA="IMAGE" name="gr8"></istex:entity>
<istex:entity SYSTEM="gr9" NDATA="IMAGE" name="gr9"></istex:entity>
</istex:docType>
<istex:document>
<converted-article version="4.5.2" docsubtype="fla">
<item-info>
<jid>MAGMA</jid>
<aid>20339</aid>
<ce:pii>S0304-8853(98)00026-2</ce:pii>
<ce:doi>10.1016/S0304-8853(98)00026-2</ce:doi>
<ce:copyright year="1998" type="full-transfer">Elsevier Science B.V.</ce:copyright>
</item-info>
<head>
<ce:title>Magnetic properties of Tm–Zr multilayers</ce:title>
<ce:author-group>
<ce:author>
<ce:given-name>A</ce:given-name>
<ce:surname>Baudry</ce:surname>
<ce:cross-ref refid="AFF1">a</ce:cross-ref>
<ce:cross-ref refid="FN1">
<ce:sup>1</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>P</ce:given-name>
<ce:surname>Boyer</ce:surname>
<ce:cross-ref refid="AFF1">a</ce:cross-ref>
<ce:cross-ref refid="CORR1">*</ce:cross-ref>
<ce:cross-ref refid="FN2">
<ce:sup>2</ce:sup>
</ce:cross-ref>
</ce:author>
<ce:author>
<ce:given-name>M</ce:given-name>
<ce:surname>Brunel</ce:surname>
<ce:cross-ref refid="AFF2">b</ce:cross-ref>
</ce:author>
<ce:affiliation id="AFF1">
<ce:label>a</ce:label>
<ce:textfn>Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France</ce:textfn>
</ce:affiliation>
<ce:affiliation id="AFF2">
<ce:label>b</ce:label>
<ce:textfn>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble Cedex 9, France</ce:textfn>
</ce:affiliation>
<ce:correspondence id="CORR1">
<ce:label>*</ce:label>
<ce:text>Corresponding author.</ce:text>
</ce:correspondence>
<ce:footnote id="FN1">
<ce:label>1</ce:label>
<ce:note-para>Affiliated to the CNRS.</ce:note-para>
</ce:footnote>
<ce:footnote id="FN2">
<ce:label>2</ce:label>
<ce:note-para>Affiliated to Université Joseph Fourier, Grenoble.</ce:note-para>
</ce:footnote>
</ce:author-group>
<ce:date-received day="10" month="7" year="1997"></ce:date-received>
<ce:date-revised day="18" month="12" year="1997"></ce:date-revised>
<ce:abstract>
<ce:section-title>Abstract</ce:section-title>
<ce:abstract-sec>
<ce:simple-para>A 600
<ce:hsp sp="0.25"></ce:hsp>
Å film of thulium and Tm–Zr multilayers in which the Tm layers are separated by 30
<ce:hsp sp="0.25"></ce:hsp>
Å non-magnetic Zr layers were evaporated on superficially oxidized silicon substrates under ultra-vacuum conditions. The thickness of the Tm layers was varied between 8 and 30
<ce:hsp sp="0.25"></ce:hsp>
Å. X-ray diffraction gives evidence for a columnar growth along the
<math altimg="si2.gif">
<b>c</b>
</math>
axis of the HCP structure, with in-plane compression of Tm layers thinner than 20
<ce:hsp sp="0.25"></ce:hsp>
Å. The magnetic structure of the film is quite similar to that of bulk Tm. On the contrary, the
<math altimg="si3.gif">
<b>c</b>
</math>
-axis modulated antiferromagnetic phase which takes place in the film at
<ce:italic>T</ce:italic>
<ce:inf>N</ce:inf>
≈54
<ce:hsp sp="0.25"></ce:hsp>
K is not observed in the multilayers. This phenomenon is preferentially attributed to an enhancement of the ferromagnetic coupling at the edges of the thulium layers, which favours a structure close to the squared 3–4 antiphase ferromagnetic arrangement of the magnetic moments displayed by the bulk below 30
<ce:hsp sp="0.25"></ce:hsp>
K. A marked trend to ferromagnetism is observed as the Tm layers become thinner. Contrary to that observed in Dy–Zr and Ho–Zr multilayers, the interface and volume anisotropies do not compensate each other for 8
<ce:hsp sp="0.25"></ce:hsp>
Å Tm layers. The
<ce:italic>c</ce:italic>
-axis magnetic anisotropy of Tm is preserved whatever the thickness of the Tm layers. The estimated anisotropies are compared with the results of point-charge crystal-field calculations.</ce:simple-para>
</ce:abstract-sec>
</ce:abstract>
<ce:keywords class="keyword">
<ce:section-title>Keywords</ce:section-title>
<ce:keyword>
<ce:text>Magnetic multilayers</ce:text>
</ce:keyword>
<ce:keyword>
<ce:text>Rare earths</ce:text>
</ce:keyword>
</ce:keywords>
</head>
</converted-article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Magnetic properties of Tm–Zr multilayers</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Magnetic properties of Tm–Zr multilayers</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Baudry</namePart>
<affiliation>Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France</affiliation>
<affiliation>1 Affiliated to the CNRS.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Boyer</namePart>
<affiliation>Département de Recherche Fondamentale sur la Matière Condensée, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France</affiliation>
<affiliation>Corresponding author.</affiliation>
<affiliation>2 Affiliated to Université Joseph Fourier, Grenoble.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Brunel</namePart>
<affiliation>Laboratoire de Cristallographie, CNRS, BP 166, 38042 Grenoble Cedex 9, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="research-article" displayLabel="Full-length article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">1998</dateIssued>
<dateModified encoding="w3cdtf">1997-12-18</dateModified>
<copyrightDate encoding="w3cdtf">1998</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract lang="en">Abstract: A 600Å film of thulium and Tm–Zr multilayers in which the Tm layers are separated by 30Å non-magnetic Zr layers were evaporated on superficially oxidized silicon substrates under ultra-vacuum conditions. The thickness of the Tm layers was varied between 8 and 30Å. X-ray diffraction gives evidence for a columnar growth along the c axis of the HCP structure, with in-plane compression of Tm layers thinner than 20Å. The magnetic structure of the film is quite similar to that of bulk Tm. On the contrary, the c-axis modulated antiferromagnetic phase which takes place in the film at TN≈54K is not observed in the multilayers. This phenomenon is preferentially attributed to an enhancement of the ferromagnetic coupling at the edges of the thulium layers, which favours a structure close to the squared 3–4 antiphase ferromagnetic arrangement of the magnetic moments displayed by the bulk below 30K. A marked trend to ferromagnetism is observed as the Tm layers become thinner. Contrary to that observed in Dy–Zr and Ho–Zr multilayers, the interface and volume anisotropies do not compensate each other for 8Å Tm layers. The c-axis magnetic anisotropy of Tm is preserved whatever the thickness of the Tm layers. The estimated anisotropies are compared with the results of point-charge crystal-field calculations.</abstract>
<note type="content">Fig. 1: X-ray Bragg patterns obtained from a θ–2θ scan around the (0002) reflections of Tm and Zr in two Tm–Zr multilayers (radiation wavelength=λCu).</note>
<note type="content">Fig. 2: Typical rocking curve recorded for a Tm–Zr multilayer. The θ scan was performed with 2θ fixed at the position of a line of the (0002) Bragg reflection pattern.</note>
<note type="content">Fig. 3: Typical in-plane diffraction pattern recorded under grazing incidence in a Tm–Zr multilayer. No lines are detected in the intermediate range 35°⩽2θ⩽50°. Bragg reflections from (hk0) atomic planes only can be observed.</note>
<note type="content">Fig. 4: Variation of the basal plane lattice parameter a of Tm against the thickness of the thulium layer in Tm–Zr multilayers. The values of a are deduced from the acurate determination of the position of the [100] Bragg reflection measured under grazing incidence. The horizontal dotted line indicates the value for bulk Tm.</note>
<note type="content">Fig. 5: Zero-field cooled field-cooled magnetization curves measured in the 600Å thick Tm film and the Tm(30Å)/Zr(30Å) multilayer. The applied magnetic field (500Oe) is perpendicular to the plane of the layers.</note>
<note type="content">Fig. 6: Magnetization curves measured at 8K in the Tm film (top) and several Tm–Zr multilayers: [Tm(30Å)/Zr(30Å)]20, [Tm(15Å)/Zr(30Å)]20 and [Tm(8Å)/Zr(30Å)]20 (bottom). The applied magnetic field is perpendicular to the film.</note>
<note type="content">Fig. 7: Perpendicular susceptibility in the Tm film and in two multilayers: [Tm(30Å)/Zr(30Å)]20 and [Tm(15Å)/Zr(30Å)]20.</note>
<note type="content">Fig. 8: Hysteresis loops measured at 8K in the Tm film (600Å) and several Tm/Zr multilayers.</note>
<note type="content">Fig. 9: Plot of the magnetic anisotropy measured in Tm–Zr(30Å) (○) and Ho–Zr(30Å) (▵) multilayers, against the thickness of the rare-earth layers. The interrupted lines are the results of crystal-field calculations performed for the Tm–Zr multilayers within the point-charge approximation. The charges affected to the Tm and Zr ions are indicated in the figure. The full line is the result of similar calculations for Ho–Zr multilayers, with Q(Ho)=0.3 and Q(Zr)=0.4 in proton charge unit.</note>
<subject>
<genre>Keywords</genre>
<topic>Magnetic multilayers</topic>
<topic>Rare earths</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Journal of Magnetism and Magnetic Materials</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>MAGMA</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<originInfo>
<publisher>ELSEVIER</publisher>
<dateIssued encoding="w3cdtf">19980616</dateIssued>
</originInfo>
<identifier type="ISSN">0304-8853</identifier>
<identifier type="PII">S0304-8853(00)X0067-4</identifier>
<part>
<date>19980616</date>
<detail type="volume">
<number>185</number>
<caption>vol.</caption>
</detail>
<detail type="issue">
<number>3</number>
<caption>no.</caption>
</detail>
<extent unit="issue-pages">
<start>267</start>
<end>400</end>
</extent>
<extent unit="pages">
<start>309</start>
<end>321</end>
</extent>
</part>
</relatedItem>
<identifier type="istex">ED039954EEDA7D88002F68629F607E671018296C</identifier>
<identifier type="ark">ark:/67375/6H6-0279420M-N</identifier>
<identifier type="DOI">10.1016/S0304-8853(98)00026-2</identifier>
<identifier type="PII">S0304-8853(98)00026-2</identifier>
<accessCondition type="use and reproduction" contentType="copyright">©1998 Elsevier Science B.V.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-HKKZVM7B-M">elsevier</recordContentSource>
<recordOrigin>Elsevier Science B.V., ©1998</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/ED039954EEDA7D88002F68629F607E671018296C/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003419 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 003419 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:ED039954EEDA7D88002F68629F607E671018296C
   |texte=   Magnetic properties of Tm–Zr multilayers
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024