Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5−and TmDOTMA−

Identifieur interne : 000165 ( Istex/Curation ); précédent : 000164; suivant : 000166

Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5−and TmDOTMA−

Auteurs : Daniel Coman [États-Unis] ; Hubert K. Trubel [États-Unis, Allemagne] ; Fahmeed Hyder [États-Unis]

Source :

RBID : ISTEX:080B81DE6BB054622D2CC62F74BF40A39377B71E

Descripteurs français

English descriptors

Abstract

Chemical shifts of complexes between paramagnetic lanthanide ions and macrocyclic chelates are sensitive to physiological variations (of temperature and/or pH). Here we demonstrate utility of a complex between thulium ion (Tm3+) and the macrocyclic chelate 1,4,7,10‐tetramethyl 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (or DOTMA4−) for absolute temperature mapping in rat brain. The feasibility of TmDOTMA− is compared with that of another Tm3+‐containing biosensor which is based on the macrocyclic chelate 1,4,7,10‐tetraazacyclododecane‐ 1,4,7,10‐tetrakis(methylene phosphonate) (or DOTP8−). In general, the in vitro and in vivo results suggest that Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from these agents (but exclude water) can provide temperature maps with good accuracy. While TmDOTP5− emanates three major distinct proton resonances which are differentially sensitive to temperature and pH, TmDOTMA− has a dominant pH‐insensitive proton resonance from a CH3 group to allow higher signal‐to‐noise ratio (SNR) temperature assessment. Temperature (and pH) sensitivities of these resonances are practically identical at low (4.0T) and high (11.7T) magnetic fields and at nominal repetition times only marginal SNR loss is expected at the lower field. Since these resonances have extremely short relaxation times, high‐speed chemical shift imaging (CSI) is needed to detect them. Repeated in vivo CSI scans with BIRDS demonstrate excellent measurement stability. Overall, results with TmDOTP5− and TmDOTMA− suggest that BIRDS can be reliably applied, either at low or high magnetic fields, for functional studies in rodents. Copyright © 2009 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/nbm.1461

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:080B81DE6BB054622D2CC62F74BF40A39377B71E

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5−and TmDOTMA−</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation wicri:level="1">
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Trubel, Hubert K" sort="Trubel, Hubert K" uniqKey="Trubel H" first="Hubert K." last="Trubel">Hubert K. Trubel</name>
<affiliation wicri:level="1">
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Department of Pediatrics at HELIOS‐Klinikum Wuppertal and University of Witten/Herdecke, Germany</mods:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Pediatrics at HELIOS‐Klinikum Wuppertal and University of Witten/Herdecke</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Bayer HealthCare AG, Wuppertal, Germany</mods:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Bayer HealthCare AG, Wuppertal</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation wicri:level="1">
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Department of Biomedical Engineering, Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>E-mail: fahmeed.hyder@yale.edu</mods:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Correspondence address: N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06510, USA.</mods:affiliation>
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Correspondence address: N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06510</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:080B81DE6BB054622D2CC62F74BF40A39377B71E</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/nbm.1461</idno>
<idno type="url">https://api.istex.fr/document/080B81DE6BB054622D2CC62F74BF40A39377B71E/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000165</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000165</idno>
<idno type="wicri:Area/Istex/Curation">000165</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP
<hi rend="superscript">5−</hi>
and TmDOTMA
<hi rend="superscript"></hi>
</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation wicri:level="1">
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Trubel, Hubert K" sort="Trubel, Hubert K" uniqKey="Trubel H" first="Hubert K." last="Trubel">Hubert K. Trubel</name>
<affiliation wicri:level="1">
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Department of Pediatrics at HELIOS‐Klinikum Wuppertal and University of Witten/Herdecke, Germany</mods:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Pediatrics at HELIOS‐Klinikum Wuppertal and University of Witten/Herdecke</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Bayer HealthCare AG, Wuppertal, Germany</mods:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Bayer HealthCare AG, Wuppertal</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation wicri:level="1">
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Diagnostic Radiology, Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Department of Biomedical Engineering, Yale University, New Haven, CT, USA</mods:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biomedical Engineering, Yale University, New Haven, CT</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>E-mail: fahmeed.hyder@yale.edu</mods:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="1">
<mods:affiliation>Correspondence address: N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06510, USA.</mods:affiliation>
<country xml:lang="fr" wicri:curation="lc">États-Unis</country>
<wicri:regionArea>Correspondence address: N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06510</wicri:regionArea>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">NMR in Biomedicine</title>
<title level="j" type="alt">NMR IN BIOMEDICINE</title>
<idno type="ISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<imprint>
<biblScope unit="vol">23</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="277">277</biblScope>
<biblScope unit="page" to="285">285</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2010-04">2010-04</date>
</imprint>
<idno type="ISSN">0952-3480</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0952-3480</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Average temperature</term>
<term>Biomed</term>
<term>Biosensor imaging</term>
<term>Birds figure</term>
<term>Brain temperature</term>
<term>Brain temperature mapping</term>
<term>Carboxylic acid</term>
<term>Carboxylic acids</term>
<term>Cerebral cortex</term>
<term>Cest</term>
<term>Cest agents</term>
<term>Chemical exchange</term>
<term>Chemical exchange saturation transfer</term>
<term>Chemical shift</term>
<term>Chemical shift imaging</term>
<term>Chemical shifts</term>
<term>Circumventricular organs</term>
<term>Clinical imaging</term>
<term>Coman</term>
<term>Copyright</term>
<term>Data acquisition</term>
<term>Datasets</term>
<term>Delivery route</term>
<term>Different temperatures</term>
<term>Eld</term>
<term>Extracellular</term>
<term>Extracellular space</term>
<term>Fenestrated vessels</term>
<term>Free induction decay</term>
<term>Functional studies</term>
<term>Good accuracy</term>
<term>Hyder</term>
<term>Hyder department</term>
<term>Hyperthermia</term>
<term>Imaging</term>
<term>Infusion doses</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Lower charge</term>
<term>Magn</term>
<term>Magnetic resonance spectroscopy</term>
<term>Major peak</term>
<term>Measure temperature</term>
<term>Molecular diffusion</term>
<term>Multiple protons</term>
<term>National institutes</term>
<term>Normal conditions</term>
<term>Observable protons</term>
<term>Paracest agents</term>
<term>Parallel glass tubes</term>
<term>Paramagnetic lanthanide</term>
<term>Phantom</term>
<term>Phosphonic acid</term>
<term>Proton</term>
<term>Proton chemical shifts</term>
<term>Proton resonance</term>
<term>Proton resonances</term>
<term>Radio frequency</term>
<term>Random noise</term>
<term>Redundant deviation</term>
<term>Relaxation times</term>
<term>Renal ligation</term>
<term>Renaly ligated rats</term>
<term>Reson</term>
<term>Right tubes</term>
<term>Short relaxation times</term>
<term>Similar level</term>
<term>Standard deviation</term>
<term>Supplementary table</term>
<term>Surface coil</term>
<term>Surface coils</term>
<term>Surface plots</term>
<term>Temperature calibration</term>
<term>Temperature determination</term>
<term>Temperature distributions</term>
<term>Temperature mapping</term>
<term>Temperature maps</term>
<term>Temperature measurements</term>
<term>Temperature sensitivities</term>
<term>Temperature sensitivity</term>
<term>Temporal stability</term>
<term>Tmdotma</term>
<term>Tmdotp5</term>
<term>Total data acquisition time</term>
<term>Traumatic brain injury</term>
<term>Trubel</term>
<term>Vivo</term>
<term>Vivo results</term>
<term>Vivo studies</term>
<term>Voxel</term>
<term>Voxels</term>
<term>Water protons</term>
<term>Yale university</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Average temperature</term>
<term>Biomed</term>
<term>Biosensor imaging</term>
<term>Birds figure</term>
<term>Brain temperature</term>
<term>Brain temperature mapping</term>
<term>Carboxylic acid</term>
<term>Carboxylic acids</term>
<term>Cerebral cortex</term>
<term>Cest</term>
<term>Cest agents</term>
<term>Chemical exchange</term>
<term>Chemical exchange saturation transfer</term>
<term>Chemical shift</term>
<term>Chemical shift imaging</term>
<term>Chemical shifts</term>
<term>Circumventricular organs</term>
<term>Clinical imaging</term>
<term>Coman</term>
<term>Copyright</term>
<term>Data acquisition</term>
<term>Datasets</term>
<term>Delivery route</term>
<term>Different temperatures</term>
<term>Eld</term>
<term>Extracellular</term>
<term>Extracellular space</term>
<term>Fenestrated vessels</term>
<term>Free induction decay</term>
<term>Functional studies</term>
<term>Good accuracy</term>
<term>Hyder</term>
<term>Hyder department</term>
<term>Hyperthermia</term>
<term>Imaging</term>
<term>Infusion doses</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Lower charge</term>
<term>Magn</term>
<term>Magnetic resonance spectroscopy</term>
<term>Major peak</term>
<term>Measure temperature</term>
<term>Molecular diffusion</term>
<term>Multiple protons</term>
<term>National institutes</term>
<term>Normal conditions</term>
<term>Observable protons</term>
<term>Paracest agents</term>
<term>Parallel glass tubes</term>
<term>Paramagnetic lanthanide</term>
<term>Phantom</term>
<term>Phosphonic acid</term>
<term>Proton</term>
<term>Proton chemical shifts</term>
<term>Proton resonance</term>
<term>Proton resonances</term>
<term>Radio frequency</term>
<term>Random noise</term>
<term>Redundant deviation</term>
<term>Relaxation times</term>
<term>Renal ligation</term>
<term>Renaly ligated rats</term>
<term>Reson</term>
<term>Right tubes</term>
<term>Short relaxation times</term>
<term>Similar level</term>
<term>Standard deviation</term>
<term>Supplementary table</term>
<term>Surface coil</term>
<term>Surface coils</term>
<term>Surface plots</term>
<term>Temperature calibration</term>
<term>Temperature determination</term>
<term>Temperature distributions</term>
<term>Temperature mapping</term>
<term>Temperature maps</term>
<term>Temperature measurements</term>
<term>Temperature sensitivities</term>
<term>Temperature sensitivity</term>
<term>Temporal stability</term>
<term>Tmdotma</term>
<term>Tmdotp5</term>
<term>Total data acquisition time</term>
<term>Traumatic brain injury</term>
<term>Trubel</term>
<term>Vivo</term>
<term>Vivo results</term>
<term>Vivo studies</term>
<term>Voxel</term>
<term>Voxels</term>
<term>Water protons</term>
<term>Yale university</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Droit d'auteur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chemical shifts of complexes between paramagnetic lanthanide ions and macrocyclic chelates are sensitive to physiological variations (of temperature and/or pH). Here we demonstrate utility of a complex between thulium ion (Tm3+) and the macrocyclic chelate 1,4,7,10‐tetramethyl 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (or DOTMA4−) for absolute temperature mapping in rat brain. The feasibility of TmDOTMA− is compared with that of another Tm3+‐containing biosensor which is based on the macrocyclic chelate 1,4,7,10‐tetraazacyclododecane‐ 1,4,7,10‐tetrakis(methylene phosphonate) (or DOTP8−). In general, the in vitro and in vivo results suggest that Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from these agents (but exclude water) can provide temperature maps with good accuracy. While TmDOTP5− emanates three major distinct proton resonances which are differentially sensitive to temperature and pH, TmDOTMA− has a dominant pH‐insensitive proton resonance from a CH3 group to allow higher signal‐to‐noise ratio (SNR) temperature assessment. Temperature (and pH) sensitivities of these resonances are practically identical at low (4.0T) and high (11.7T) magnetic fields and at nominal repetition times only marginal SNR loss is expected at the lower field. Since these resonances have extremely short relaxation times, high‐speed chemical shift imaging (CSI) is needed to detect them. Repeated in vivo CSI scans with BIRDS demonstrate excellent measurement stability. Overall, results with TmDOTP5− and TmDOTMA− suggest that BIRDS can be reliably applied, either at low or high magnetic fields, for functional studies in rodents. Copyright © 2009 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000165 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Curation/biblio.hfd -nk 000165 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:080B81DE6BB054622D2CC62F74BF40A39377B71E
   |texte=   Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5−and TmDOTMA−
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024