Serveur d'exploration sur le thulium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5−and TmDOTMA−

Identifieur interne : 000165 ( Istex/Corpus ); précédent : 000164; suivant : 000166

Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5−and TmDOTMA−

Auteurs : Daniel Coman ; Hubert K. Trubel ; Fahmeed Hyder

Source :

RBID : ISTEX:080B81DE6BB054622D2CC62F74BF40A39377B71E

English descriptors

Abstract

Chemical shifts of complexes between paramagnetic lanthanide ions and macrocyclic chelates are sensitive to physiological variations (of temperature and/or pH). Here we demonstrate utility of a complex between thulium ion (Tm3+) and the macrocyclic chelate 1,4,7,10‐tetramethyl 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (or DOTMA4−) for absolute temperature mapping in rat brain. The feasibility of TmDOTMA− is compared with that of another Tm3+‐containing biosensor which is based on the macrocyclic chelate 1,4,7,10‐tetraazacyclododecane‐ 1,4,7,10‐tetrakis(methylene phosphonate) (or DOTP8−). In general, the in vitro and in vivo results suggest that Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from these agents (but exclude water) can provide temperature maps with good accuracy. While TmDOTP5− emanates three major distinct proton resonances which are differentially sensitive to temperature and pH, TmDOTMA− has a dominant pH‐insensitive proton resonance from a CH3 group to allow higher signal‐to‐noise ratio (SNR) temperature assessment. Temperature (and pH) sensitivities of these resonances are practically identical at low (4.0T) and high (11.7T) magnetic fields and at nominal repetition times only marginal SNR loss is expected at the lower field. Since these resonances have extremely short relaxation times, high‐speed chemical shift imaging (CSI) is needed to detect them. Repeated in vivo CSI scans with BIRDS demonstrate excellent measurement stability. Overall, results with TmDOTP5− and TmDOTMA− suggest that BIRDS can be reliably applied, either at low or high magnetic fields, for functional studies in rodents. Copyright © 2009 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/nbm.1461

Links to Exploration step

ISTEX:080B81DE6BB054622D2CC62F74BF40A39377B71E

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5−and TmDOTMA−</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Trubel, Hubert K" sort="Trubel, Hubert K" uniqKey="Trubel H" first="Hubert K." last="Trubel">Hubert K. Trubel</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Pediatrics at HELIOS‐Klinikum Wuppertal and University of Witten/Herdecke, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Bayer HealthCare AG, Wuppertal, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: fahmeed.hyder@yale.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06510, USA.</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:080B81DE6BB054622D2CC62F74BF40A39377B71E</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/nbm.1461</idno>
<idno type="url">https://api.istex.fr/document/080B81DE6BB054622D2CC62F74BF40A39377B71E/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000165</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000165</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP
<hi rend="superscript">5−</hi>
and TmDOTMA
<hi rend="superscript"></hi>
</title>
<author>
<name sortKey="Coman, Daniel" sort="Coman, Daniel" uniqKey="Coman D" first="Daniel" last="Coman">Daniel Coman</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Trubel, Hubert K" sort="Trubel, Hubert K" uniqKey="Trubel H" first="Hubert K." last="Trubel">Hubert K. Trubel</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Pediatrics at HELIOS‐Klinikum Wuppertal and University of Witten/Herdecke, Germany</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Bayer HealthCare AG, Wuppertal, Germany</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hyder, Fahmeed" sort="Hyder, Fahmeed" uniqKey="Hyder F" first="Fahmeed" last="Hyder">Fahmeed Hyder</name>
<affiliation>
<mods:affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Biomedical Engineering, Yale University, New Haven, CT, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: fahmeed.hyder@yale.edu</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Correspondence address: N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06510, USA.</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">NMR in Biomedicine</title>
<title level="j" type="alt">NMR IN BIOMEDICINE</title>
<idno type="ISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<imprint>
<biblScope unit="vol">23</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="277">277</biblScope>
<biblScope unit="page" to="285">285</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2010-04">2010-04</date>
</imprint>
<idno type="ISSN">0952-3480</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0952-3480</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Average temperature</term>
<term>Biomed</term>
<term>Biosensor imaging</term>
<term>Birds figure</term>
<term>Brain temperature</term>
<term>Brain temperature mapping</term>
<term>Carboxylic acid</term>
<term>Carboxylic acids</term>
<term>Cerebral cortex</term>
<term>Cest</term>
<term>Cest agents</term>
<term>Chemical exchange</term>
<term>Chemical exchange saturation transfer</term>
<term>Chemical shift</term>
<term>Chemical shift imaging</term>
<term>Chemical shifts</term>
<term>Circumventricular organs</term>
<term>Clinical imaging</term>
<term>Coman</term>
<term>Copyright</term>
<term>Data acquisition</term>
<term>Datasets</term>
<term>Delivery route</term>
<term>Different temperatures</term>
<term>Eld</term>
<term>Extracellular</term>
<term>Extracellular space</term>
<term>Fenestrated vessels</term>
<term>Free induction decay</term>
<term>Functional studies</term>
<term>Good accuracy</term>
<term>Hyder</term>
<term>Hyder department</term>
<term>Hyperthermia</term>
<term>Imaging</term>
<term>Infusion doses</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Lower charge</term>
<term>Magn</term>
<term>Magnetic resonance spectroscopy</term>
<term>Major peak</term>
<term>Measure temperature</term>
<term>Molecular diffusion</term>
<term>Multiple protons</term>
<term>National institutes</term>
<term>Normal conditions</term>
<term>Observable protons</term>
<term>Paracest agents</term>
<term>Parallel glass tubes</term>
<term>Paramagnetic lanthanide</term>
<term>Phantom</term>
<term>Phosphonic acid</term>
<term>Proton</term>
<term>Proton chemical shifts</term>
<term>Proton resonance</term>
<term>Proton resonances</term>
<term>Radio frequency</term>
<term>Random noise</term>
<term>Redundant deviation</term>
<term>Relaxation times</term>
<term>Renal ligation</term>
<term>Renaly ligated rats</term>
<term>Reson</term>
<term>Right tubes</term>
<term>Short relaxation times</term>
<term>Similar level</term>
<term>Standard deviation</term>
<term>Supplementary table</term>
<term>Surface coil</term>
<term>Surface coils</term>
<term>Surface plots</term>
<term>Temperature calibration</term>
<term>Temperature determination</term>
<term>Temperature distributions</term>
<term>Temperature mapping</term>
<term>Temperature maps</term>
<term>Temperature measurements</term>
<term>Temperature sensitivities</term>
<term>Temperature sensitivity</term>
<term>Temporal stability</term>
<term>Tmdotma</term>
<term>Tmdotp5</term>
<term>Total data acquisition time</term>
<term>Traumatic brain injury</term>
<term>Trubel</term>
<term>Vivo</term>
<term>Vivo results</term>
<term>Vivo studies</term>
<term>Voxel</term>
<term>Voxels</term>
<term>Water protons</term>
<term>Yale university</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Average temperature</term>
<term>Biomed</term>
<term>Biosensor imaging</term>
<term>Birds figure</term>
<term>Brain temperature</term>
<term>Brain temperature mapping</term>
<term>Carboxylic acid</term>
<term>Carboxylic acids</term>
<term>Cerebral cortex</term>
<term>Cest</term>
<term>Cest agents</term>
<term>Chemical exchange</term>
<term>Chemical exchange saturation transfer</term>
<term>Chemical shift</term>
<term>Chemical shift imaging</term>
<term>Chemical shifts</term>
<term>Circumventricular organs</term>
<term>Clinical imaging</term>
<term>Coman</term>
<term>Copyright</term>
<term>Data acquisition</term>
<term>Datasets</term>
<term>Delivery route</term>
<term>Different temperatures</term>
<term>Eld</term>
<term>Extracellular</term>
<term>Extracellular space</term>
<term>Fenestrated vessels</term>
<term>Free induction decay</term>
<term>Functional studies</term>
<term>Good accuracy</term>
<term>Hyder</term>
<term>Hyder department</term>
<term>Hyperthermia</term>
<term>Imaging</term>
<term>Infusion doses</term>
<term>John wiley sons</term>
<term>Lanthanide</term>
<term>Lower charge</term>
<term>Magn</term>
<term>Magnetic resonance spectroscopy</term>
<term>Major peak</term>
<term>Measure temperature</term>
<term>Molecular diffusion</term>
<term>Multiple protons</term>
<term>National institutes</term>
<term>Normal conditions</term>
<term>Observable protons</term>
<term>Paracest agents</term>
<term>Parallel glass tubes</term>
<term>Paramagnetic lanthanide</term>
<term>Phantom</term>
<term>Phosphonic acid</term>
<term>Proton</term>
<term>Proton chemical shifts</term>
<term>Proton resonance</term>
<term>Proton resonances</term>
<term>Radio frequency</term>
<term>Random noise</term>
<term>Redundant deviation</term>
<term>Relaxation times</term>
<term>Renal ligation</term>
<term>Renaly ligated rats</term>
<term>Reson</term>
<term>Right tubes</term>
<term>Short relaxation times</term>
<term>Similar level</term>
<term>Standard deviation</term>
<term>Supplementary table</term>
<term>Surface coil</term>
<term>Surface coils</term>
<term>Surface plots</term>
<term>Temperature calibration</term>
<term>Temperature determination</term>
<term>Temperature distributions</term>
<term>Temperature mapping</term>
<term>Temperature maps</term>
<term>Temperature measurements</term>
<term>Temperature sensitivities</term>
<term>Temperature sensitivity</term>
<term>Temporal stability</term>
<term>Tmdotma</term>
<term>Tmdotp5</term>
<term>Total data acquisition time</term>
<term>Traumatic brain injury</term>
<term>Trubel</term>
<term>Vivo</term>
<term>Vivo results</term>
<term>Vivo studies</term>
<term>Voxel</term>
<term>Voxels</term>
<term>Water protons</term>
<term>Yale university</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Chemical shifts of complexes between paramagnetic lanthanide ions and macrocyclic chelates are sensitive to physiological variations (of temperature and/or pH). Here we demonstrate utility of a complex between thulium ion (Tm3+) and the macrocyclic chelate 1,4,7,10‐tetramethyl 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (or DOTMA4−) for absolute temperature mapping in rat brain. The feasibility of TmDOTMA− is compared with that of another Tm3+‐containing biosensor which is based on the macrocyclic chelate 1,4,7,10‐tetraazacyclododecane‐ 1,4,7,10‐tetrakis(methylene phosphonate) (or DOTP8−). In general, the in vitro and in vivo results suggest that Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from these agents (but exclude water) can provide temperature maps with good accuracy. While TmDOTP5− emanates three major distinct proton resonances which are differentially sensitive to temperature and pH, TmDOTMA− has a dominant pH‐insensitive proton resonance from a CH3 group to allow higher signal‐to‐noise ratio (SNR) temperature assessment. Temperature (and pH) sensitivities of these resonances are practically identical at low (4.0T) and high (11.7T) magnetic fields and at nominal repetition times only marginal SNR loss is expected at the lower field. Since these resonances have extremely short relaxation times, high‐speed chemical shift imaging (CSI) is needed to detect them. Repeated in vivo CSI scans with BIRDS demonstrate excellent measurement stability. Overall, results with TmDOTP5− and TmDOTMA− suggest that BIRDS can be reliably applied, either at low or high magnetic fields, for functional studies in rodents. Copyright © 2009 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<keywords>
<teeft>
<json:string>tmdotp5</json:string>
<json:string>tmdotma</json:string>
<json:string>proton</json:string>
<json:string>eld</json:string>
<json:string>biomed</json:string>
<json:string>extracellular</json:string>
<json:string>copyright</json:string>
<json:string>coman</json:string>
<json:string>john wiley sons</json:string>
<json:string>lanthanide</json:string>
<json:string>magn</json:string>
<json:string>reson</json:string>
<json:string>hyder</json:string>
<json:string>cest</json:string>
<json:string>voxels</json:string>
<json:string>trubel</json:string>
<json:string>datasets</json:string>
<json:string>voxel</json:string>
<json:string>hyperthermia</json:string>
<json:string>chemical shifts</json:string>
<json:string>chemical shift</json:string>
<json:string>imaging</json:string>
<json:string>yale university</json:string>
<json:string>cerebral cortex</json:string>
<json:string>chemical shift imaging</json:string>
<json:string>temperature determination</json:string>
<json:string>redundant deviation</json:string>
<json:string>temperature sensitivities</json:string>
<json:string>vivo studies</json:string>
<json:string>supplementary table</json:string>
<json:string>proton resonance</json:string>
<json:string>temperature mapping</json:string>
<json:string>biosensor imaging</json:string>
<json:string>brain temperature mapping</json:string>
<json:string>phantom</json:string>
<json:string>vivo</json:string>
<json:string>water protons</json:string>
<json:string>parallel glass tubes</json:string>
<json:string>data acquisition</json:string>
<json:string>proton chemical shifts</json:string>
<json:string>surface coil</json:string>
<json:string>right tubes</json:string>
<json:string>brain temperature</json:string>
<json:string>extracellular space</json:string>
<json:string>lower charge</json:string>
<json:string>temperature sensitivity</json:string>
<json:string>chemical exchange saturation transfer</json:string>
<json:string>relaxation times</json:string>
<json:string>major peak</json:string>
<json:string>proton resonances</json:string>
<json:string>standard deviation</json:string>
<json:string>temperature distributions</json:string>
<json:string>similar level</json:string>
<json:string>random noise</json:string>
<json:string>temperature calibration</json:string>
<json:string>surface plots</json:string>
<json:string>carboxylic acid</json:string>
<json:string>phosphonic acid</json:string>
<json:string>paramagnetic lanthanide</json:string>
<json:string>cest agents</json:string>
<json:string>radio frequency</json:string>
<json:string>free induction decay</json:string>
<json:string>national institutes</json:string>
<json:string>hyder department</json:string>
<json:string>renal ligation</json:string>
<json:string>observable protons</json:string>
<json:string>chemical exchange</json:string>
<json:string>molecular diffusion</json:string>
<json:string>measure temperature</json:string>
<json:string>normal conditions</json:string>
<json:string>functional studies</json:string>
<json:string>total data acquisition time</json:string>
<json:string>birds figure</json:string>
<json:string>multiple protons</json:string>
<json:string>short relaxation times</json:string>
<json:string>good accuracy</json:string>
<json:string>different temperatures</json:string>
<json:string>renaly ligated rats</json:string>
<json:string>temporal stability</json:string>
<json:string>infusion doses</json:string>
<json:string>carboxylic acids</json:string>
<json:string>average temperature</json:string>
<json:string>fenestrated vessels</json:string>
<json:string>circumventricular organs</json:string>
<json:string>delivery route</json:string>
<json:string>surface coils</json:string>
<json:string>clinical imaging</json:string>
<json:string>traumatic brain injury</json:string>
<json:string>magnetic resonance spectroscopy</json:string>
<json:string>temperature maps</json:string>
<json:string>vivo results</json:string>
<json:string>paracest agents</json:string>
<json:string>temperature measurements</json:string>
</teeft>
</keywords>
<author>
<json:item>
<name>Daniel Coman</name>
<affiliations>
<json:string>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</json:string>
<json:string>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</json:string>
<json:string>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>Hubert K. Trubel</name>
<affiliations>
<json:string>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</json:string>
<json:string>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</json:string>
<json:string>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</json:string>
<json:string>Department of Pediatrics at HELIOS‐Klinikum Wuppertal and University of Witten/Herdecke, Germany</json:string>
<json:string>Bayer HealthCare AG, Wuppertal, Germany</json:string>
</affiliations>
</json:item>
<json:item>
<name>Fahmeed Hyder</name>
<affiliations>
<json:string>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</json:string>
<json:string>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</json:string>
<json:string>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</json:string>
<json:string>Department of Biomedical Engineering, Yale University, New Haven, CT, USA</json:string>
<json:string>N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06510, USA.</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>CEST</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>distribution</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>pH</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>paramagnetic</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>temperature</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>thulium</value>
</json:item>
</subject>
<articleId>
<json:string>NBM1461</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>article</json:string>
</originalGenre>
<abstract>Chemical shifts of complexes between paramagnetic lanthanide ions and macrocyclic chelates are sensitive to physiological variations (of temperature and/or pH). Here we demonstrate utility of a complex between thulium ion (Tm3+) and the macrocyclic chelate 1,4,7,10‐tetramethyl 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (or DOTMA4−) for absolute temperature mapping in rat brain. The feasibility of TmDOTMA− is compared with that of another Tm3+‐containing biosensor which is based on the macrocyclic chelate 1,4,7,10‐tetraazacyclododecane‐ 1,4,7,10‐tetrakis(methylene phosphonate) (or DOTP8−). In general, the in vitro and in vivo results suggest that Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from these agents (but exclude water) can provide temperature maps with good accuracy. While TmDOTP5− emanates three major distinct proton resonances which are differentially sensitive to temperature and pH, TmDOTMA− has a dominant pH‐insensitive proton resonance from a CH3 group to allow higher signal‐to‐noise ratio (SNR) temperature assessment. Temperature (and pH) sensitivities of these resonances are practically identical at low (4.0T) and high (11.7T) magnetic fields and at nominal repetition times only marginal SNR loss is expected at the lower field. Since these resonances have extremely short relaxation times, high‐speed chemical shift imaging (CSI) is needed to detect them. Repeated in vivo CSI scans with BIRDS demonstrate excellent measurement stability. Overall, results with TmDOTP5− and TmDOTMA− suggest that BIRDS can be reliably applied, either at low or high magnetic fields, for functional studies in rodents. Copyright © 2009 John Wiley & Sons, Ltd.</abstract>
<qualityIndicators>
<score>7.808</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>595 x 791 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<abstractCharCount>1717</abstractCharCount>
<pdfWordCount>6591</pdfWordCount>
<pdfCharCount>39811</pdfCharCount>
<pdfPageCount>9</pdfPageCount>
<abstractWordCount>234</abstractWordCount>
</qualityIndicators>
<title>Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5−and TmDOTMA−</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>NMR in Biomedicine</title>
<language>
<json:string>unknown</json:string>
</language>
<doi>
<json:string>10.1002/(ISSN)1099-1492</json:string>
</doi>
<issn>
<json:string>0952-3480</json:string>
</issn>
<eissn>
<json:string>1099-1492</json:string>
</eissn>
<publisherId>
<json:string>NBM</json:string>
</publisherId>
<volume>23</volume>
<issue>3</issue>
<pages>
<first>277</first>
<last>285</last>
<total>9</total>
</pages>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
</host>
<categories>
<wos>
<json:string>science</json:string>
<json:string>spectroscopy</json:string>
<json:string>radiology, nuclear medicine & medical imaging</json:string>
<json:string>biophysics</json:string>
</wos>
<scienceMetrix>
<json:string>health sciences</json:string>
<json:string>clinical medicine</json:string>
<json:string>nuclear medicine & medical imaging</json:string>
</scienceMetrix>
<inist>
<json:string>sciences appliquees, technologies et medecines</json:string>
<json:string>sciences biologiques et medicales</json:string>
<json:string>sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>biophysique des tissus, organes et organismes</json:string>
</inist>
</categories>
<publicationDate>2010</publicationDate>
<copyrightDate>2010</copyrightDate>
<doi>
<json:string>10.1002/nbm.1461</json:string>
</doi>
<id>080B81DE6BB054622D2CC62F74BF40A39377B71E</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/document/080B81DE6BB054622D2CC62F74BF40A39377B71E/fulltext/pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/document/080B81DE6BB054622D2CC62F74BF40A39377B71E/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/080B81DE6BB054622D2CC62F74BF40A39377B71E/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP
<hi rend="superscript">5−</hi>
and TmDOTMA
<hi rend="superscript"></hi>
</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<availability>
<licence>Copyright © 2009 John Wiley & Sons, Ltd.</licence>
</availability>
<date type="published" when="2010-04"></date>
</publicationStmt>
<notesStmt>
<note type="content-type" subtype="article" source="article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</note>
<note type="publication-type" subtype="journal" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main" xml:lang="en">Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP
<hi rend="superscript">5−</hi>
and TmDOTMA
<hi rend="superscript"></hi>
</title>
<title level="a" type="short" xml:lang="en">BRAIN TEMPERATURE MAPPING WITH BIRDS</title>
<author xml:id="author-0000">
<persName>
<forename type="first">Daniel</forename>
<surname>Coman</surname>
</persName>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0001">
<persName>
<forename type="first">Hubert K.</forename>
<surname>Trubel</surname>
</persName>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Department of Pediatrics at HELIOS‐Klinikum Wuppertal and University of Witten/Herdecke, Germany
<address>
<country key="DE"></country>
</address>
</affiliation>
<affiliation>Bayer HealthCare AG, Wuppertal, Germany
<address>
<country key="DE"></country>
</address>
</affiliation>
</author>
<author xml:id="author-0002" role="corresp">
<persName>
<forename type="first">Fahmeed</forename>
<surname>Hyder</surname>
</persName>
<email>fahmeed.hyder@yale.edu</email>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>Department of Biomedical Engineering, Yale University, New Haven, CT, USA
<address>
<country key="US"></country>
</address>
</affiliation>
<affiliation>N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06510, USA.</affiliation>
</author>
<idno type="istex">080B81DE6BB054622D2CC62F74BF40A39377B71E</idno>
<idno type="ark">ark:/67375/WNG-0SS1B44C-S</idno>
<idno type="DOI">10.1002/nbm.1461</idno>
<idno type="unit">NBM1461</idno>
<idno type="toTypesetVersion">file:NBM.NBM1461.pdf</idno>
</analytic>
<monogr>
<title level="j" type="main">NMR in Biomedicine</title>
<title level="j" type="alt">NMR IN BIOMEDICINE</title>
<idno type="pISSN">0952-3480</idno>
<idno type="eISSN">1099-1492</idno>
<idno type="book-DOI">10.1002/(ISSN)1099-1492</idno>
<idno type="book-part-DOI">10.1002/nbm.v23:3</idno>
<idno type="product">NBM</idno>
<imprint>
<biblScope unit="vol">23</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="277">277</biblScope>
<biblScope unit="page" to="285">285</biblScope>
<biblScope unit="page-count">9</biblScope>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2010-04"></date>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<abstract xml:lang="en" style="main">
<head>Abstract</head>
<p>Chemical shifts of complexes between paramagnetic lanthanide ions and macrocyclic chelates are sensitive to physiological variations (of temperature and/or pH). Here we demonstrate utility of a complex between thulium ion (Tm
<hi rend="superscript">3+</hi>
) and the macrocyclic chelate 1,4,7,10‐tetramethyl 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (or DOTMA
<hi rend="superscript">4−</hi>
) for absolute temperature mapping in rat brain. The feasibility of TmDOTMA
<hi rend="superscript"></hi>
is compared with that of another Tm
<hi rend="superscript">3+</hi>
‐containing biosensor which is based on the macrocyclic chelate 1,4,7,10‐tetraazacyclododecane‐ 1,4,7,10‐tetrakis(methylene phosphonate) (or DOTP
<hi rend="superscript">8−</hi>
). In general, the
<hi rend="italic">in</hi>
<hi rend="italic">vitro</hi>
and
<hi rend="italic">in</hi>
<hi rend="italic">vivo</hi>
results suggest that Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from these agents (but exclude water) can provide temperature maps with good accuracy. While TmDOTP
<hi rend="superscript">5−</hi>
emanates three major distinct proton resonances which are differentially sensitive to temperature and pH, TmDOTMA
<hi rend="superscript"></hi>
has a dominant pH‐insensitive proton resonance from a CH
<hi rend="subscript">3</hi>
group to allow higher signal‐to‐noise ratio (SNR) temperature assessment. Temperature (and pH) sensitivities of these resonances are practically identical at low (4.0T) and high (11.7T) magnetic fields and at nominal repetition times only marginal SNR loss is expected at the lower field. Since these resonances have extremely short relaxation times, high‐speed chemical shift imaging (CSI) is needed to detect them. Repeated
<hi rend="italic">in</hi>
<hi rend="italic">vivo</hi>
CSI scans with BIRDS demonstrate excellent measurement stability. Overall, results with TmDOTP
<hi rend="superscript">5−</hi>
and TmDOTMA
<hi rend="superscript"></hi>
suggest that BIRDS can be reliably applied, either at low or high magnetic fields, for functional studies in rodents. Copyright © 2009 John Wiley & Sons, Ltd.</p>
</abstract>
<abstract xml:lang="en" style="graphical">
<p>Here we demonstrate absolute temperature mapping in rat brain using two thulium‐based agents, TmDOTP
<hi rend="superscript">5−</hi>
and TmDOTMA
<hi rend="superscript"></hi>
. In vitro and in vivo results show that Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) provides temperature maps with good accuracy. Both agents are present in extracellular space at mM level and overall the results with TmDOTP
<hi rend="superscript">5−</hi>
and TmDOTMA
<hi rend="superscript"></hi>
suggest that BIRDS can be reliably applied, either at low or high magnetic fields, for functional studies in rodents.
<figure type="box">
<media mimeType="image" url="urn:x-wiley:09523480:media:NBM1461:gra001"></media>
<media mimeType="image/gif" url="" rendition="webLoRes"></media>
<media mimeType="image/jpeg" url="" rendition="webOriginal"></media>
<media mimeType="image/jpeg" url="" rendition="webHiRes"></media>
</figure>
</p>
</abstract>
<textClass>
<keywords xml:lang="en">
<term xml:id="kwd1">CEST</term>
<term xml:id="kwd2">distribution</term>
<term xml:id="kwd3">pH</term>
<term xml:id="kwd4">paramagnetic</term>
<term xml:id="kwd5">temperature</term>
<term xml:id="kwd6">thulium</term>
</keywords>
<keywords rend="articleCategory">
<term>Research Article</term>
</keywords>
<keywords rend="tocHeading1">
<term>Research Articles</term>
</keywords>
</textClass>
<langUsage>
<language ident="en"></language>
</langUsage>
</profileDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/document/080B81DE6BB054622D2CC62F74BF40A39377B71E/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>John Wiley & Sons, Ltd.</publisherName>
<publisherLoc>Chichester, UK</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1099-1492</doi>
<issn type="print">0952-3480</issn>
<issn type="electronic">1099-1492</issn>
<idGroup>
<id type="product" value="NBM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="NMR IN BIOMEDICINE">NMR in Biomedicine</title>
<title type="short">NMR Biomed.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi origin="wiley" registered="yes">10.1002/nbm.v23:3</doi>
<numberingGroup>
<numbering type="journalVolume" number="23">23</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="2010-04">April 2010</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="80" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/nbm.1461</doi>
<idGroup>
<id type="unit" value="NBM1461"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="9"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2009 John Wiley & Sons, Ltd.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2009-08-04"></event>
<event type="manuscriptRevised" date="2009-08-28"></event>
<event type="manuscriptAccepted" date="2009-08-30"></event>
<event type="firstOnline" date="2009-12-02"></event>
<event type="publishedOnlineFinalForm" date="2010-03-15"></event>
<event type="publishedOnlineAcceptedOrEarlyUnpaginated" date="2009-12-02"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.4.7 mode:FullText source:HeaderRef result:HeaderRef" date="2011-02-24"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-02-03"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-31"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">277</numbering>
<numbering type="pageLast">285</numbering>
</numberingGroup>
<correspondenceTo>N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06510, USA.</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:NBM.NBM1461.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="4"></count>
<count type="tableTotal" number="2"></count>
<count type="referenceTotal" number="41"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP
<sup>5−</sup>
and TmDOTMA
<sup></sup>
</title>
<title type="short" xml:lang="en">BRAIN TEMPERATURE MAPPING WITH BIRDS</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1 #af2 #af3">
<personName>
<givenNames>Daniel</givenNames>
<familyName>Coman</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1 #af2 #af3 #af4 #af5">
<personName>
<givenNames>Hubert K.</givenNames>
<familyName>Trubel</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af1 #af2 #af3 #af6" corresponding="yes">
<personName>
<givenNames>Fahmeed</givenNames>
<familyName>Hyder</familyName>
</personName>
<contactDetails>
<email>fahmeed.hyder@yale.edu</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="US" type="organization">
<unparsedAffiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="US" type="organization">
<unparsedAffiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="US" type="organization">
<unparsedAffiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af4" countryCode="DE" type="organization">
<unparsedAffiliation>Department of Pediatrics at HELIOS‐Klinikum Wuppertal and University of Witten/Herdecke, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af5" countryCode="DE" type="organization">
<unparsedAffiliation>Bayer HealthCare AG, Wuppertal, Germany</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af6" countryCode="US" type="organization">
<unparsedAffiliation>Department of Biomedical Engineering, Yale University, New Haven, CT, USA</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">CEST</keyword>
<keyword xml:id="kwd2">distribution</keyword>
<keyword xml:id="kwd3">pH</keyword>
<keyword xml:id="kwd4">paramagnetic</keyword>
<keyword xml:id="kwd5">temperature</keyword>
<keyword xml:id="kwd6">thulium</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>National Institutes of Health</fundingAgency>
<fundingNumber>R01 MH‐067528</fundingNumber>
<fundingNumber>P30 NS‐52519</fundingNumber>
</fundingInfo>
<supportingInformation>
<p> Supporting information may be found in the online version of this article. </p>
<supportingInfoItem>
<mediaResource alt="supporting information" href="urn-x:wiley:09523480:media:nbm1461:NBM_1461_sm_SuppMat"></mediaResource>
<caption>Supplementary Materal</caption>
</supportingInfoItem>
</supportingInformation>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>Chemical shifts of complexes between paramagnetic lanthanide ions and macrocyclic chelates are sensitive to physiological variations (of temperature and/or pH). Here we demonstrate utility of a complex between thulium ion (Tm
<sup>3+</sup>
) and the macrocyclic chelate 1,4,7,10‐tetramethyl 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (or DOTMA
<sup>4−</sup>
) for absolute temperature mapping in rat brain. The feasibility of TmDOTMA
<sup></sup>
is compared with that of another Tm
<sup>3+</sup>
‐containing biosensor which is based on the macrocyclic chelate 1,4,7,10‐tetraazacyclododecane‐ 1,4,7,10‐tetrakis(methylene phosphonate) (or DOTP
<sup>8−</sup>
). In general, the
<i>in</i>
<i>vitro</i>
and
<i>in</i>
<i>vivo</i>
results suggest that Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from these agents (but exclude water) can provide temperature maps with good accuracy. While TmDOTP
<sup>5−</sup>
emanates three major distinct proton resonances which are differentially sensitive to temperature and pH, TmDOTMA
<sup></sup>
has a dominant pH‐insensitive proton resonance from a CH
<sub>3</sub>
group to allow higher signal‐to‐noise ratio (SNR) temperature assessment. Temperature (and pH) sensitivities of these resonances are practically identical at low (4.0T) and high (11.7T) magnetic fields and at nominal repetition times only marginal SNR loss is expected at the lower field. Since these resonances have extremely short relaxation times, high‐speed chemical shift imaging (CSI) is needed to detect them. Repeated
<i>in</i>
<i>vivo</i>
CSI scans with BIRDS demonstrate excellent measurement stability. Overall, results with TmDOTP
<sup>5−</sup>
and TmDOTMA
<sup></sup>
suggest that BIRDS can be reliably applied, either at low or high magnetic fields, for functional studies in rodents. Copyright © 2009 John Wiley & Sons, Ltd.</p>
</abstract>
<abstract type="graphical" xml:lang="en">
<p>Here we demonstrate absolute temperature mapping in rat brain using two thulium‐based agents, TmDOTP
<sup>5−</sup>
and TmDOTMA
<sup></sup>
. In vitro and in vivo results show that Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) provides temperature maps with good accuracy. Both agents are present in extracellular space at mM level and overall the results with TmDOTP
<sup>5−</sup>
and TmDOTMA
<sup></sup>
suggest that BIRDS can be reliably applied, either at low or high magnetic fields, for functional studies in rodents.
<blockFixed type="graphic">
<mediaResourceGroup>
<mediaResource alt="image" eRights="yes" copyright="John Wiley & Sons, Ltd." href="urn:x-wiley:09523480:media:NBM1461:gra001"></mediaResource>
<mediaResource alt="thumbnail image" rendition="webLoRes" mimeType="image/gif" href=""></mediaResource>
<mediaResource alt="original image" rendition="webOriginal" mimeType="image/jpeg" href=""></mediaResource>
<mediaResource alt="magnified image" rendition="webHiRes" mimeType="image/jpeg" href=""></mediaResource>
</mediaResourceGroup>
</blockFixed>
</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5−and TmDOTMA−</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>BRAIN TEMPERATURE MAPPING WITH BIRDS</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5−and TmDOTMA−</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Coman</namePart>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hubert K.</namePart>
<namePart type="family">Trubel</namePart>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</affiliation>
<affiliation>Department of Pediatrics at HELIOS‐Klinikum Wuppertal and University of Witten/Herdecke, Germany</affiliation>
<affiliation>Bayer HealthCare AG, Wuppertal, Germany</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fahmeed</namePart>
<namePart type="family">Hyder</namePart>
<affiliation>Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Core Center for Quantitative Neuroscience with Magnetic Resonance (QNMR), Yale University, New Haven, CT, USA</affiliation>
<affiliation>Department of Diagnostic Radiology, Yale University, New Haven, CT, USA</affiliation>
<affiliation>Department of Biomedical Engineering, Yale University, New Haven, CT, USA</affiliation>
<affiliation>E-mail: fahmeed.hyder@yale.edu</affiliation>
<affiliation>Correspondence address: N135 TAC (MRRC), 300 Cedar Street, Yale University, New Haven, CT 06510, USA.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>John Wiley & Sons, Ltd.</publisher>
<place>
<placeTerm type="text">Chichester, UK</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2010-04</dateIssued>
<dateCaptured encoding="w3cdtf">2009-08-04</dateCaptured>
<dateValid encoding="w3cdtf">2009-08-30</dateValid>
<copyrightDate encoding="w3cdtf">2010</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<extent unit="figures">4</extent>
<extent unit="tables">2</extent>
<extent unit="references">41</extent>
</physicalDescription>
<abstract lang="en">Chemical shifts of complexes between paramagnetic lanthanide ions and macrocyclic chelates are sensitive to physiological variations (of temperature and/or pH). Here we demonstrate utility of a complex between thulium ion (Tm3+) and the macrocyclic chelate 1,4,7,10‐tetramethyl 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetate (or DOTMA4−) for absolute temperature mapping in rat brain. The feasibility of TmDOTMA− is compared with that of another Tm3+‐containing biosensor which is based on the macrocyclic chelate 1,4,7,10‐tetraazacyclododecane‐ 1,4,7,10‐tetrakis(methylene phosphonate) (or DOTP8−). In general, the in vitro and in vivo results suggest that Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) which originate from these agents (but exclude water) can provide temperature maps with good accuracy. While TmDOTP5− emanates three major distinct proton resonances which are differentially sensitive to temperature and pH, TmDOTMA− has a dominant pH‐insensitive proton resonance from a CH3 group to allow higher signal‐to‐noise ratio (SNR) temperature assessment. Temperature (and pH) sensitivities of these resonances are practically identical at low (4.0T) and high (11.7T) magnetic fields and at nominal repetition times only marginal SNR loss is expected at the lower field. Since these resonances have extremely short relaxation times, high‐speed chemical shift imaging (CSI) is needed to detect them. Repeated in vivo CSI scans with BIRDS demonstrate excellent measurement stability. Overall, results with TmDOTP5− and TmDOTMA− suggest that BIRDS can be reliably applied, either at low or high magnetic fields, for functional studies in rodents. Copyright © 2009 John Wiley & Sons, Ltd.</abstract>
<abstract type="graphical" lang="en">Here we demonstrate absolute temperature mapping in rat brain using two thulium‐based agents, TmDOTP5− and TmDOTMA−. In vitro and in vivo results show that Biosensor Imaging of Redundant Deviation in Shifts (BIRDS) provides temperature maps with good accuracy. Both agents are present in extracellular space at mM level and overall the results with TmDOTP5− and TmDOTMA− suggest that BIRDS can be reliably applied, either at low or high magnetic fields, for functional studies in rodents.</abstract>
<note type="funding">National Institutes of Health - No. R01 MH‐067528; No. P30 NS‐52519; </note>
<subject lang="en">
<genre>keywords</genre>
<topic>CEST</topic>
<topic>distribution</topic>
<topic>pH</topic>
<topic>paramagnetic</topic>
<topic>temperature</topic>
<topic>thulium</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>NMR in Biomedicine</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>NMR Biomed.</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<note type="content"> Supporting information may be found in the online version of this article.Supporting Info Item: Supplementary Materal - </note>
<subject>
<genre>article-category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">0952-3480</identifier>
<identifier type="eISSN">1099-1492</identifier>
<identifier type="DOI">10.1002/(ISSN)1099-1492</identifier>
<identifier type="PublisherID">NBM</identifier>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>23</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>277</start>
<end>285</end>
<total>9</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">080B81DE6BB054622D2CC62F74BF40A39377B71E</identifier>
<identifier type="ark">ark:/67375/WNG-0SS1B44C-S</identifier>
<identifier type="DOI">10.1002/nbm.1461</identifier>
<identifier type="ArticleID">NBM1461</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2009 John Wiley & Sons, Ltd.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-L0C46X92-X">wiley</recordContentSource>
<recordOrigin>John Wiley & Sons, Ltd.</recordOrigin>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/document/080B81DE6BB054622D2CC62F74BF40A39377B71E/metadata/json</uri>
</json:item>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/ThuliumV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000165 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 000165 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    ThuliumV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:080B81DE6BB054622D2CC62F74BF40A39377B71E
   |texte=   Brain temperature by Biosensor Imaging of Redundant Deviation in Shifts (BIRDS): comparison between TmDOTP5−and TmDOTMA−
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu May 12 08:27:09 2016. Site generation: Thu Mar 7 22:33:44 2024