Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices

Identifieur interne : 013910 ( Main/Repository ); précédent : 013909; suivant : 013911

Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices

Auteurs : RBID : Pascal:99-0523209

Descripteurs français

English descriptors

Abstract

High-quality indium-tin-oxide (ITO) thin films (200-850 nm) have been grown by pulsed laser deposition (PLD) on glass substrates without a postdeposition annealing treatment. The structural, electrical, and optical properties of these films have been investigated as a function of target composition, substrate deposition temperature, background gas pressure, and film thickness. Films were deposited from various target compositions ranging from 0 to 15 wt% of SnO2 content. The optimum target composition for high conductivity was 5 wt% SnO2+95 wt% In2O3. Films were deposited at substrate temperatures ranging from room temperature to 300°C in O2 partial pressures ranging from 1 to 100 mTorr. Films were deposited using a KrF excimer laser (248 nm, 30 ns full width at half maximum) at a fluence of 2 J/cm2. For a 150-nm-thick ITO film grown at room temperature in an oxygen pressure of 10 mTorr, the resistivity was 4×10-4 Ωcm and the average transmission in the visible range (400-700 nm) was 85%. For a 170-nm-thick ITO film deposited at 300°C in 10 mTorr of oxygen, the resistivity was 2×10-4 Ωcm and the average transmission in the visible range was 92%. The Hall mobility and carrier density for a 150-nm-thick film deposited at 300°C were 27 cm2/Vs and 1.4×1021 cm-3, respectively. A reduction in the refractive index for ITO films can be achieved by raising the electron density in the films, which can be obtained by increasing the concentration of Sn dopants in the targets and/or increasing deposition temperature. Atomic force microscopy measurements of these ITO films indicated that their root-mean-square surface roughness (∼5 Å) was superior to that of commercially available sputter deposited ITO films (∼40 Å). The PLD ITO films were used to fabricate organic light-emitting diodes. From these structures the electroluminescence was measured and an external quantum efficiency of 1.5% was calculated. © 1999 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:99-0523209

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices</title>
<author>
<name sortKey="Kim, H" uniqKey="Kim H">H. Kim</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Applied Science, George Washington University, 725 23rd Street Northwest, Washington DC 20052</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Gilmore, C M" uniqKey="Gilmore C">C. M. Gilmore</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Engineering and Applied Science, George Washington University, 725 23rd Street Northwest, Washington DC 20052</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Pique, A" uniqKey="Pique A">A. Pique</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington DC 20375</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Horwitz, J S" uniqKey="Horwitz J">J. S. Horwitz</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington DC 20375</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Mattoussi, H" uniqKey="Mattoussi H">H. Mattoussi</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington DC 20375</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Murata, H" uniqKey="Murata H">H. Murata</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington DC 20375</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Kafafi, Z H" uniqKey="Kafafi Z">Z. H. Kafafi</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington DC 20375</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Chrisey, D B" uniqKey="Chrisey D">D. B. Chrisey</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington DC 20375</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">99-0523209</idno>
<date when="1999-12-01">1999-12-01</date>
<idno type="stanalyst">PASCAL 99-0523209 AIP</idno>
<idno type="RBID">Pascal:99-0523209</idno>
<idno type="wicri:Area/Main/Corpus">014118</idno>
<idno type="wicri:Area/Main/Repository">013910</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Carrier density</term>
<term>Electrical resistivity</term>
<term>Electroluminescence</term>
<term>Experimental study</term>
<term>Hall mobility</term>
<term>Indium compounds</term>
<term>Light emitting diodes</term>
<term>Light transmission</term>
<term>Pulsed laser deposition</term>
<term>Refractive index</term>
<term>Semiconductor thin films</term>
<term>Substrates</term>
<term>Surface topography</term>
<term>Tin compounds</term>
<term>Visible spectra</term>
<term>rough surfaces</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>8105H</term>
<term>8115F</term>
<term>6855J</term>
<term>7361L</term>
<term>7866L</term>
<term>7350J</term>
<term>7820C</term>
<term>6835B</term>
<term>8560J</term>
<term>7860F</term>
<term>7840F</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Etain composé</term>
<term>Dépôt laser pulsé</term>
<term>Couche mince semiconductrice</term>
<term>Mobilité Hall</term>
<term>Densité porteur charge</term>
<term>Indice réfraction</term>
<term>Microscopie force atomique</term>
<term>Electroluminescence</term>
<term>Topographie surface</term>
<term>Diode électroluminescente</term>
<term>Transmission lumière</term>
<term>Résistivité électrique</term>
<term>Substrat</term>
<term>Spectre visible</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High-quality indium-tin-oxide (ITO) thin films (200-850 nm) have been grown by pulsed laser deposition (PLD) on glass substrates without a postdeposition annealing treatment. The structural, electrical, and optical properties of these films have been investigated as a function of target composition, substrate deposition temperature, background gas pressure, and film thickness. Films were deposited from various target compositions ranging from 0 to 15 wt% of SnO
<sub>2</sub>
content. The optimum target composition for high conductivity was 5 wt% SnO
<sub>2</sub>
+95 wt% In
<sub>2</sub>
O
<sub>3</sub>
. Films were deposited at substrate temperatures ranging from room temperature to 300°C in O
<sub>2</sub>
partial pressures ranging from 1 to 100 mTorr. Films were deposited using a KrF excimer laser (248 nm, 30 ns full width at half maximum) at a fluence of 2 J/cm
<sup>2</sup>
. For a 150-nm-thick ITO film grown at room temperature in an oxygen pressure of 10 mTorr, the resistivity was 4×10
<sup>-4</sup>
Ωcm and the average transmission in the visible range (400-700 nm) was 85%. For a 170-nm-thick ITO film deposited at 300°C in 10 mTorr of oxygen, the resistivity was 2×10
<sup>-4</sup>
Ωcm and the average transmission in the visible range was 92%. The Hall mobility and carrier density for a 150-nm-thick film deposited at 300°C were 27 cm
<sup>2</sup>
/Vs and 1.4×10
<sup>21</sup>
cm
<sup>-3</sup>
, respectively. A reduction in the refractive index for ITO films can be achieved by raising the electron density in the films, which can be obtained by increasing the concentration of Sn dopants in the targets and/or increasing deposition temperature. Atomic force microscopy measurements of these ITO films indicated that their root-mean-square surface roughness (∼5 Å) was superior to that of commercially available sputter deposited ITO films (∼40 Å). The PLD ITO films were used to fabricate organic light-emitting diodes. From these structures the electroluminescence was measured and an external quantum efficiency of 1.5% was calculated. © 1999 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>86</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KIM (H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GILMORE (C. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PIQUE (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HORWITZ (J. S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MATTOUSSI (H.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>MURATA (H.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KAFAFI (Z. H.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>CHRISEY (D. B.)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Engineering and Applied Science, George Washington University, 725 23rd Street Northwest, Washington DC 20052</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington DC 20375</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>6451-6461</s1>
</fA20>
<fA21>
<s1>1999-12-01</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 1999 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>99-0523209</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>High-quality indium-tin-oxide (ITO) thin films (200-850 nm) have been grown by pulsed laser deposition (PLD) on glass substrates without a postdeposition annealing treatment. The structural, electrical, and optical properties of these films have been investigated as a function of target composition, substrate deposition temperature, background gas pressure, and film thickness. Films were deposited from various target compositions ranging from 0 to 15 wt% of SnO
<sub>2</sub>
content. The optimum target composition for high conductivity was 5 wt% SnO
<sub>2</sub>
+95 wt% In
<sub>2</sub>
O
<sub>3</sub>
. Films were deposited at substrate temperatures ranging from room temperature to 300°C in O
<sub>2</sub>
partial pressures ranging from 1 to 100 mTorr. Films were deposited using a KrF excimer laser (248 nm, 30 ns full width at half maximum) at a fluence of 2 J/cm
<sup>2</sup>
. For a 150-nm-thick ITO film grown at room temperature in an oxygen pressure of 10 mTorr, the resistivity was 4×10
<sup>-4</sup>
Ωcm and the average transmission in the visible range (400-700 nm) was 85%. For a 170-nm-thick ITO film deposited at 300°C in 10 mTorr of oxygen, the resistivity was 2×10
<sup>-4</sup>
Ωcm and the average transmission in the visible range was 92%. The Hall mobility and carrier density for a 150-nm-thick film deposited at 300°C were 27 cm
<sup>2</sup>
/Vs and 1.4×10
<sup>21</sup>
cm
<sup>-3</sup>
, respectively. A reduction in the refractive index for ITO films can be achieved by raising the electron density in the films, which can be obtained by increasing the concentration of Sn dopants in the targets and/or increasing deposition temperature. Atomic force microscopy measurements of these ITO films indicated that their root-mean-square surface roughness (∼5 Å) was superior to that of commercially available sputter deposited ITO films (∼40 Å). The PLD ITO films were used to fabricate organic light-emitting diodes. From these structures the electroluminescence was measured and an external quantum efficiency of 1.5% was calculated. © 1999 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15F</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70C61L</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70H66L</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B70C50J</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B70H20C</s0>
</fC02>
<fC02 i1="08" i2="3">
<s0>001B60H35B</s0>
</fC02>
<fC02 i1="09" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="10" i2="3">
<s0>001B70H60F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>8105H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8115F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>6855J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7361L</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7866L</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>7350J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>7820C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>6835B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>8560J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>7860F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>7840F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Etain composé</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Tin compounds</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Dépôt laser pulsé</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Pulsed laser deposition</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Couche mince semiconductrice</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Semiconductor thin films</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Mobilité Hall</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Hall mobility</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Carrier density</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Indice réfraction</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Refractive index</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Electroluminescence</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Electroluminescence</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>rough surfaces</s0>
<s4>INC</s4>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Topographie surface</s0>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Surface topography</s0>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Diode électroluminescente</s0>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Light emitting diodes</s0>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Transmission lumière</s0>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Light transmission</s0>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Résistivité électrique</s0>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Electrical resistivity</s0>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Substrat</s0>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Substrates</s0>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Spectre visible</s0>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Visible spectra</s0>
</fC03>
<fN21>
<s1>333</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>9945M000216</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 013910 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 013910 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:99-0523209
   |texte=   Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024