Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of hydrogen on doping of GaInNAs grown by gas-source molecular beam epitaxy

Identifieur interne : 012106 ( Main/Repository ); précédent : 012105; suivant : 012107

Effects of hydrogen on doping of GaInNAs grown by gas-source molecular beam epitaxy

Auteurs : RBID : Pascal:00-0245798

Descripteurs français

English descriptors

Abstract

In this article, we investigate the effects of hydrogen (H) on doping of GaInNAs grown by gas-source molecular beam epitaxy with a rf plasma nitrogen radical beam source. Incorporating nitrogen (N) into p-Ga0.892In0.108As reduces strain and improves thermal stability. With increasing N concentration, more H, from thermally cracked AsH3, is incorporated alongside N into GaInAs. H has two effects on GaInNAs: acting as an isolated donor and passivating shallow dopants by forming complexes. With increasing N concentration, the free carrier concentration in the as-grown highly Be-doped Ga0.892In0.108NxAs1-x is decreased mainly due to H passivation. Rapid thermal annealing (RTA) increases free carrier concentration due to a reduced H level. The as-grown undoped Ga0.924In0.076N0.030As0.970 sample should be p type without H since N introduces a localized acceptor-like level. Our as-grown undoped sample in n-type 6.9×1015cm-3 due to charge compensation with H donors. After 700°C RTA, the film becomes p-type 5.7×1016cm-3 due to the reduced H donors. For highly Si-doped GaInNAs (∼1×1018cm-3), H mainly passivates the dopants, so the free carrier concentration is increased after RTA. © 2000 American Vacuum Society.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0245798

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effects of hydrogen on doping of GaInNAs grown by gas-source molecular beam epitaxy</title>
<author>
<name sortKey="Xin, H P" uniqKey="Xin H">H. P. Xin</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093-0407</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Bell Laboratories, Lucent Technologies, Breinigsville, Pennsylvania 18031-9359</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Bell Laboratories, Lucent Technologies, Breinigsville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Tu, C W" uniqKey="Tu C">C. W. Tu</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093-0407</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Geva, M" uniqKey="Geva M">M. Geva</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093-0407</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">00-0245798</idno>
<date when="2000-05">2000-05</date>
<idno type="stanalyst">PASCAL 00-0245798 AIP</idno>
<idno type="RBID">Pascal:00-0245798</idno>
<idno type="wicri:Area/Main/Corpus">013086</idno>
<idno type="wicri:Area/Main/Repository">012106</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1071-1023</idno>
<title level="j" type="abbreviated">J. vac. sci. technol., B., Microelectron. nanometer struct. process. meas. phenom.</title>
<title level="j" type="main">Journal of vacuum science & technology. B. Microelectronics and nanometer structures. Processing, measurement and phenomena</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carrier density</term>
<term>Charge compensation</term>
<term>Chemical beam epitaxy</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>Hydrogen</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Passivation</term>
<term>Rapid thermal annealing</term>
<term>Semiconductor doping</term>
<term>Semiconductor epitaxial layers</term>
<term>Semiconductor growth</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>8115H</term>
<term>8105E</term>
<term>6172C</term>
<term>6172V</term>
<term>6855L</term>
<term>Etude expérimentale</term>
<term>Recuit thermique rapide</term>
<term>Dopage semiconducteur</term>
<term>Hydrogène</term>
<term>Semiconducteur III-V</term>
<term>Gallium arséniure</term>
<term>Indium composé</term>
<term>Croissance semiconducteur</term>
<term>Couche épitaxique semiconductrice</term>
<term>Epitaxie jet chimique</term>
<term>Densité porteur charge</term>
<term>Compensation charge</term>
<term>Passivation</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Hydrogène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this article, we investigate the effects of hydrogen (H) on doping of GaInNAs grown by gas-source molecular beam epitaxy with a rf plasma nitrogen radical beam source. Incorporating nitrogen (N) into p-Ga
<sub>0.892</sub>
In
<sub>0.108</sub>
As reduces strain and improves thermal stability. With increasing N concentration, more H, from thermally cracked AsH
<sub>3</sub>
, is incorporated alongside N into GaInAs. H has two effects on GaInNAs: acting as an isolated donor and passivating shallow dopants by forming complexes. With increasing N concentration, the free carrier concentration in the as-grown highly Be-doped Ga
<sub>0.892</sub>
In
<sub>0.108</sub>
N
<sub>x</sub>
As
<sub>1-x</sub>
is decreased mainly due to H passivation. Rapid thermal annealing (RTA) increases free carrier concentration due to a reduced H level. The as-grown undoped Ga
<sub>0.924</sub>
In
<sub>0.076</sub>
N
<sub>0.030</sub>
As
<sub>0.970</sub>
sample should be p type without H since N introduces a localized acceptor-like level. Our as-grown undoped sample in n-type 6.9×10
<sup>15</sup>
cm
<sup>-3</sup>
due to charge compensation with H donors. After 700°C RTA, the film becomes p-type 5.7×10
<sup>16</sup>
cm
<sup>-3</sup>
due to the reduced H donors. For highly Si-doped GaInNAs (∼1×10
<sup>18</sup>
cm
<sup>-3</sup>
), H mainly passivates the dopants, so the free carrier concentration is increased after RTA. © 2000 American Vacuum Society.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1071-1023</s0>
</fA01>
<fA02 i1="01">
<s0>JVTBD9</s0>
</fA02>
<fA03 i2="1">
<s0>J. vac. sci. technol., B., Microelectron. nanometer struct. process. meas. phenom.</s0>
</fA03>
<fA05>
<s2>18</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effects of hydrogen on doping of GaInNAs grown by gas-source molecular beam epitaxy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>XIN (H. P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TU (C. W.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GEVA (M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California 92093-0407</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Bell Laboratories, Lucent Technologies, Breinigsville, Pennsylvania 18031-9359</s1>
</fA14>
<fA20>
<s1>1476-1479</s1>
</fA20>
<fA21>
<s1>2000-05</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>11992 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2000 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>00-0245798</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of vacuum science & technology. B. Microelectronics and nanometer structures. Processing, measurement and phenomena</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this article, we investigate the effects of hydrogen (H) on doping of GaInNAs grown by gas-source molecular beam epitaxy with a rf plasma nitrogen radical beam source. Incorporating nitrogen (N) into p-Ga
<sub>0.892</sub>
In
<sub>0.108</sub>
As reduces strain and improves thermal stability. With increasing N concentration, more H, from thermally cracked AsH
<sub>3</sub>
, is incorporated alongside N into GaInAs. H has two effects on GaInNAs: acting as an isolated donor and passivating shallow dopants by forming complexes. With increasing N concentration, the free carrier concentration in the as-grown highly Be-doped Ga
<sub>0.892</sub>
In
<sub>0.108</sub>
N
<sub>x</sub>
As
<sub>1-x</sub>
is decreased mainly due to H passivation. Rapid thermal annealing (RTA) increases free carrier concentration due to a reduced H level. The as-grown undoped Ga
<sub>0.924</sub>
In
<sub>0.076</sub>
N
<sub>0.030</sub>
As
<sub>0.970</sub>
sample should be p type without H since N introduces a localized acceptor-like level. Our as-grown undoped sample in n-type 6.9×10
<sup>15</sup>
cm
<sup>-3</sup>
due to charge compensation with H donors. After 700°C RTA, the film becomes p-type 5.7×10
<sup>16</sup>
cm
<sup>-3</sup>
due to the reduced H donors. For highly Si-doped GaInNAs (∼1×10
<sup>18</sup>
cm
<sup>-3</sup>
), H mainly passivates the dopants, so the free carrier concentration is increased after RTA. © 2000 American Vacuum Society.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60A72C</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60A72V</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B60H55L</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>8115H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8105E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>6172C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>6172V</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>6855L</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Recuit thermique rapide</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Rapid thermal annealing</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Dopage semiconducteur</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Semiconductor doping</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Hydrogène</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Hydrogen</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Croissance semiconducteur</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Semiconductor growth</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Couche épitaxique semiconductrice</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Semiconductor epitaxial layers</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Epitaxie jet chimique</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Chemical beam epitaxy</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Carrier density</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Compensation charge</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Charge compensation</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Passivation</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Passivation</s0>
</fC03>
<fN21>
<s1>164</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0023M000535</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 012106 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 012106 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:00-0245798
   |texte=   Effects of hydrogen on doping of GaInNAs grown by gas-source molecular beam epitaxy
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024