Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Growth of high-quality (Al,Ga)N and (Ga,In)N heterostructures on SiC(0001) by both plasma-assisted and reactive molecular beam epitaxy

Identifieur interne : 011E02 ( Main/Repository ); précédent : 011E01; suivant : 011E03

Growth of high-quality (Al,Ga)N and (Ga,In)N heterostructures on SiC(0001) by both plasma-assisted and reactive molecular beam epitaxy

Auteurs : RBID : Pascal:00-0337181

Descripteurs français

English descriptors

Abstract

We discuss the strategies essential for the growth of high-quality (Al,Ga)N/GaN and (Ga,In)N/GaN heterostructures on SiC(0001) substrates by molecular beam epitaxy (MBE) using either N2 plasma discharge or NH3 cracking as an active nitrogen source. Optimization of substrate preparation, nucleation, and growth conditions are the important issues to improve the surface morphology, interface abruptness, structural integrity, and electronic properties. A breakthrough in preparing the SiC(0001) surface was achieved by ex situ etching in H2 at 1600°C and subsequent in situ cleaning via several cycles of Ga deposition and flash-off at 800°C. By far the best results are then obtained, when growth is initiated directly, i.e., without any specific nucleation phase, for both plasma assisted (PA)MBE and reactive (R)MBE. Using growth rates of 0.5-1.2 μm/h the optimum growth temperature Ts was found to be 700°C for GaN. Any deviation from the optimum Ts and the optimum III/V flux ratio can be easily detected by reflection high energy electron diffraction and adjusted appropriately. Using these careful optimization strategies, both PAMBE and RMBE produce (Al,Ga,In)N heterostructures on SiC(0001) of high morphological, structural, and electronic quality in a very reproducible manner. The only difference between the two nitrogen sources is the very limited incorporation of In in (Ga,In)N in the presence of hydrogen from the NH3 cracking on the growing surface. In PAMBE-grown (Ga,In)/GaN single and multiple quantum wells we achieved In mole fractions from 0.05 to 0.70 in 3 nm wells which very efficiently emit in the violet to yellow spectral range at 300 K. © 2000 American Vacuum Society.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0337181

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Growth of high-quality (Al,Ga)N and (Ga,In)N heterostructures on SiC(0001) by both plasma-assisted and reactive molecular beam epitaxy</title>
<author>
<name sortKey="Ploog, K H" uniqKey="Ploog K">K. H. Ploog</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Paul-Drude-Institut for Solid State Electronics, D-10117 Berlin, Germany</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Paul-Drude-Institut for Solid State Electronics, D-10117 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brandt, O" uniqKey="Brandt O">O. Brandt</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Paul-Drude-Institut for Solid State Electronics, D-10117 Berlin, Germany</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Paul-Drude-Institut for Solid State Electronics, D-10117 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Muralidharan, R" uniqKey="Muralidharan R">R. Muralidharan</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Paul-Drude-Institut for Solid State Electronics, D-10117 Berlin, Germany</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Paul-Drude-Institut for Solid State Electronics, D-10117 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thamm, A" uniqKey="Thamm A">A. Thamm</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Paul-Drude-Institut for Solid State Electronics, D-10117 Berlin, Germany</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Paul-Drude-Institut for Solid State Electronics, D-10117 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Waltereit, P" uniqKey="Waltereit P">P. Waltereit</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Paul-Drude-Institut for Solid State Electronics, D-10117 Berlin, Germany</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Paul-Drude-Institut for Solid State Electronics, D-10117 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">00-0337181</idno>
<date when="2000-07-20">2000-07-20</date>
<idno type="stanalyst">PASCAL 00-0337181 AIP</idno>
<idno type="RBID">Pascal:00-0337181</idno>
<idno type="wicri:Area/Main/Corpus">012A68</idno>
<idno type="wicri:Area/Main/Repository">011E02</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1071-1023</idno>
<title level="j" type="abbreviated">J. vac. sci. technol., B., Microelectron. nanometer struct. process. meas. phenom.</title>
<title level="j" type="main">Journal of vacuum science & technology. B. Microelectronics and nanometer structures. Processing, measurement and phenomena</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium compounds</term>
<term>Experimental study</term>
<term>Gallium compounds</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Molecular beam epitaxy</term>
<term>Semiconductor epitaxial layers</term>
<term>Semiconductor growth</term>
<term>Semiconductor heterojunctions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7340K</term>
<term>8115H</term>
<term>8105E</term>
<term>Etude expérimentale</term>
<term>Gallium composé</term>
<term>Semiconducteur III-V</term>
<term>Hétérojonction semiconducteur</term>
<term>Croissance semiconducteur</term>
<term>Couche épitaxique semiconductrice</term>
<term>Epitaxie jet moléculaire</term>
<term>Aluminium composé</term>
<term>Indium composé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We discuss the strategies essential for the growth of high-quality (Al,Ga)N/GaN and (Ga,In)N/GaN heterostructures on SiC(0001) substrates by molecular beam epitaxy (MBE) using either N
<sub>2</sub>
plasma discharge or NH
<sub>3</sub>
cracking as an active nitrogen source. Optimization of substrate preparation, nucleation, and growth conditions are the important issues to improve the surface morphology, interface abruptness, structural integrity, and electronic properties. A breakthrough in preparing the SiC(0001) surface was achieved by ex situ etching in H
<sub>2</sub>
at 1600°C and subsequent in situ cleaning via several cycles of Ga deposition and flash-off at 800°C. By far the best results are then obtained, when growth is initiated directly, i.e., without any specific nucleation phase, for both plasma assisted (PA)MBE and reactive (R)MBE. Using growth rates of 0.5-1.2 μm/h the optimum growth temperature T
<sub>s</sub>
was found to be 700°C for GaN. Any deviation from the optimum T
<sub>s</sub>
and the optimum III/V flux ratio can be easily detected by reflection high energy electron diffraction and adjusted appropriately. Using these careful optimization strategies, both PAMBE and RMBE produce (Al,Ga,In)N heterostructures on SiC(0001) of high morphological, structural, and electronic quality in a very reproducible manner. The only difference between the two nitrogen sources is the very limited incorporation of In in (Ga,In)N in the presence of hydrogen from the NH
<sub>3</sub>
cracking on the growing surface. In PAMBE-grown (Ga,In)/GaN single and multiple quantum wells we achieved In mole fractions from 0.05 to 0.70 in 3 nm wells which very efficiently emit in the violet to yellow spectral range at 300 K. © 2000 American Vacuum Society.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1071-1023</s0>
</fA01>
<fA02 i1="01">
<s0>JVTBD9</s0>
</fA02>
<fA03 i2="1">
<s0>J. vac. sci. technol., B., Microelectron. nanometer struct. process. meas. phenom.</s0>
</fA03>
<fA05>
<s2>18</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Growth of high-quality (Al,Ga)N and (Ga,In)N heterostructures on SiC(0001) by both plasma-assisted and reactive molecular beam epitaxy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PLOOG (K. H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BRANDT (O.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MURALIDHARAN (R.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>THAMM (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WALTEREIT (P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Paul-Drude-Institut for Solid State Electronics, D-10117 Berlin, Germany</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>2290-2294</s1>
</fA20>
<fA21>
<s1>2000-07-20</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>11992 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2000 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>00-0337181</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of vacuum science & technology. B. Microelectronics and nanometer structures. Processing, measurement and phenomena</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We discuss the strategies essential for the growth of high-quality (Al,Ga)N/GaN and (Ga,In)N/GaN heterostructures on SiC(0001) substrates by molecular beam epitaxy (MBE) using either N
<sub>2</sub>
plasma discharge or NH
<sub>3</sub>
cracking as an active nitrogen source. Optimization of substrate preparation, nucleation, and growth conditions are the important issues to improve the surface morphology, interface abruptness, structural integrity, and electronic properties. A breakthrough in preparing the SiC(0001) surface was achieved by ex situ etching in H
<sub>2</sub>
at 1600°C and subsequent in situ cleaning via several cycles of Ga deposition and flash-off at 800°C. By far the best results are then obtained, when growth is initiated directly, i.e., without any specific nucleation phase, for both plasma assisted (PA)MBE and reactive (R)MBE. Using growth rates of 0.5-1.2 μm/h the optimum growth temperature T
<sub>s</sub>
was found to be 700°C for GaN. Any deviation from the optimum T
<sub>s</sub>
and the optimum III/V flux ratio can be easily detected by reflection high energy electron diffraction and adjusted appropriately. Using these careful optimization strategies, both PAMBE and RMBE produce (Al,Ga,In)N heterostructures on SiC(0001) of high morphological, structural, and electronic quality in a very reproducible manner. The only difference between the two nitrogen sources is the very limited incorporation of In in (Ga,In)N in the presence of hydrogen from the NH
<sub>3</sub>
cracking on the growing surface. In PAMBE-grown (Ga,In)/GaN single and multiple quantum wells we achieved In mole fractions from 0.05 to 0.70 in 3 nm wells which very efficiently emit in the violet to yellow spectral range at 300 K. © 2000 American Vacuum Society.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C40K</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7340K</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8115H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>8105E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Hétérojonction semiconducteur</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Semiconductor heterojunctions</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Croissance semiconducteur</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Semiconductor growth</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Couche épitaxique semiconductrice</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Semiconductor epitaxial layers</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Aluminium composé</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Aluminium compounds</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fN21>
<s1>228</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0032M000424</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 011E02 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 011E02 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:00-0337181
   |texte=   Growth of high-quality (Al,Ga)N and (Ga,In)N heterostructures on SiC(0001) by both plasma-assisted and reactive molecular beam epitaxy
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024