Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optical absorption and photoluminescence in the defect-chalcopyrite-type semiconductor ZnIn2Te4

Identifieur interne : 00BD31 ( Main/Repository ); précédent : 00BD30; suivant : 00BD32

Optical absorption and photoluminescence in the defect-chalcopyrite-type semiconductor ZnIn2Te4

Auteurs : RBID : Pascal:04-0046341

Descripteurs français

English descriptors

Abstract

Optical absorption and photoluminescence (PL) spectra have been measured on the defect-chalcopyrite-type semiconductor ZnIn2Te4 in the 1.1-1.6 eV photon-energy range at temperatures between 11 and 300 K. The temperature dependence of the direct-gap energy of ZnIn2Te4 has been determined from the optical absorption spectra and fit using the Varshni equation and an analytical four-parameter expression developed for the explanation of the band-gap shrinkage effect in semiconductors. The PL spectra show an asymmetric emission band at ∼1.4 eV, which is attributed to donor-acceptor pair recombination between quasicontinuously distributed donor states and acceptor levels. At temperatures above 90 K, the band-to-band emission begins to appear at the high-energy tail of the donor-acceptor pair recombination. A double-exponential fit analysis of the PL spectra suggests an acceptor level of 64 meV and an unidentified shallow level of 9 meV. An energy-band scheme has been proposed for the explanation of PL emission in the defect-chalcopyrite-type semiconductors.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0046341

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optical absorption and photoluminescence in the defect-chalcopyrite-type semiconductor ZnIn
<sub>2</sub>
Te
<sub>4</sub>
</title>
<author>
<name sortKey="Ozaki, Shunji" uniqKey="Ozaki S">Shunji Ozaki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Engineering, Faculty of Engineering, Gunma University, Kiryu-shi, Gunma 376-8515, Japan</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Electronic Engineering, Faculty of Engineering, Gunma University, Kiryu-shi, Gunma 376-8515</wicri:regionArea>
<wicri:noRegion>Gunma 376-8515</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Boku, Sei Ichi" uniqKey="Boku S">Sei-Ichi Boku</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Engineering, Faculty of Engineering, Gunma University, Kiryu-shi, Gunma 376-8515, Japan</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Electronic Engineering, Faculty of Engineering, Gunma University, Kiryu-shi, Gunma 376-8515</wicri:regionArea>
<wicri:noRegion>Gunma 376-8515</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Adachi, Sadao" uniqKey="Adachi S">Sadao Adachi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic Engineering, Faculty of Engineering, Gunma University, Kiryu-shi, Gunma 376-8515, Japan</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Department of Electronic Engineering, Faculty of Engineering, Gunma University, Kiryu-shi, Gunma 376-8515</wicri:regionArea>
<wicri:noRegion>Gunma 376-8515</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">04-0046341</idno>
<date when="2003-12-15">2003-12-15</date>
<idno type="stanalyst">PASCAL 04-0046341 AIP</idno>
<idno type="RBID">Pascal:04-0046341</idno>
<idno type="wicri:Area/Main/Corpus">00C110</idno>
<idno type="wicri:Area/Main/Repository">00BD31</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1098-0121</idno>
<title level="j" type="abbreviated">Phys. rev., B, Condens. matter mater. phys.</title>
<title level="j" type="main">Physical review. B, Condensed matter and materials physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption coefficients</term>
<term>Defect absorption spectra</term>
<term>Electron-hole recombination</term>
<term>Energy gap</term>
<term>Experimental study</term>
<term>Indium compounds</term>
<term>Photoluminescence</term>
<term>Ternary semiconductors</term>
<term>Visible spectra</term>
<term>Zinc compounds</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7820C</term>
<term>7840F</term>
<term>7855H</term>
<term>Etude expérimentale</term>
<term>Semiconducteur ternaire</term>
<term>Zinc composé</term>
<term>Indium composé</term>
<term>Photoluminescence</term>
<term>Spectre visible</term>
<term>Spectre absorption défaut</term>
<term>Bande interdite</term>
<term>Recombinaison électron trou</term>
<term>Coefficient absorption</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Optical absorption and photoluminescence (PL) spectra have been measured on the defect-chalcopyrite-type semiconductor ZnIn
<sub>2</sub>
Te
<sub>4</sub>
in the 1.1-1.6 eV photon-energy range at temperatures between 11 and 300 K. The temperature dependence of the direct-gap energy of ZnIn
<sub>2</sub>
Te
<sub>4</sub>
has been determined from the optical absorption spectra and fit using the Varshni equation and an analytical four-parameter expression developed for the explanation of the band-gap shrinkage effect in semiconductors. The PL spectra show an asymmetric emission band at ∼1.4 eV, which is attributed to donor-acceptor pair recombination between quasicontinuously distributed donor states and acceptor levels. At temperatures above 90 K, the band-to-band emission begins to appear at the high-energy tail of the donor-acceptor pair recombination. A double-exponential fit analysis of the PL spectra suggests an acceptor level of 64 meV and an unidentified shallow level of 9 meV. An energy-band scheme has been proposed for the explanation of PL emission in the defect-chalcopyrite-type semiconductors.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1098-0121</s0>
</fA01>
<fA02 i1="01">
<s0>PRBMDO</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. rev., B, Condens. matter mater. phys.</s0>
</fA03>
<fA05>
<s2>68</s2>
</fA05>
<fA06>
<s2>23</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optical absorption and photoluminescence in the defect-chalcopyrite-type semiconductor ZnIn
<sub>2</sub>
Te
<sub>4</sub>
</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>OZAKI (Shunji)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BOKU (Sei-ichi)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ADACHI (Sadao)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electronic Engineering, Faculty of Engineering, Gunma University, Kiryu-shi, Gunma 376-8515, Japan</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>235201-235201-7</s2>
</fA20>
<fA21>
<s1>2003-12-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>144 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2004 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>04-0046341</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physical review. B, Condensed matter and materials physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Optical absorption and photoluminescence (PL) spectra have been measured on the defect-chalcopyrite-type semiconductor ZnIn
<sub>2</sub>
Te
<sub>4</sub>
in the 1.1-1.6 eV photon-energy range at temperatures between 11 and 300 K. The temperature dependence of the direct-gap energy of ZnIn
<sub>2</sub>
Te
<sub>4</sub>
has been determined from the optical absorption spectra and fit using the Varshni equation and an analytical four-parameter expression developed for the explanation of the band-gap shrinkage effect in semiconductors. The PL spectra show an asymmetric emission band at ∼1.4 eV, which is attributed to donor-acceptor pair recombination between quasicontinuously distributed donor states and acceptor levels. At temperatures above 90 K, the band-to-band emission begins to appear at the high-energy tail of the donor-acceptor pair recombination. A double-exponential fit analysis of the PL spectra suggests an acceptor level of 64 meV and an unidentified shallow level of 9 meV. An energy-band scheme has been proposed for the explanation of PL emission in the defect-chalcopyrite-type semiconductors.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H20C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H40F</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H55H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7820C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7840F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7855H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur ternaire</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Ternary semiconductors</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Zinc composé</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Zinc compounds</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Spectre visible</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Visible spectra</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Spectre absorption défaut</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Defect absorption spectra</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Bande interdite</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Energy gap</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Recombinaison électron trou</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Electron-hole recombination</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Coefficient absorption</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Absorption coefficients</s0>
</fC03>
<fN21>
<s1>026</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0403M000474</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00BD31 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00BD31 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:04-0046341
   |texte=   Optical absorption and photoluminescence in the defect-chalcopyrite-type semiconductor ZnIn2Te4
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024