Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nanoscopic electric potential probing: Influence of probe-sample interface on spatial resolution

Identifieur interne : 00A848 ( Main/Repository ); précédent : 00A847; suivant : 00A849

Nanoscopic electric potential probing: Influence of probe-sample interface on spatial resolution

Auteurs : RBID : Pascal:04-0055865

Descripteurs français

English descriptors

Abstract

Electric potential probing on the nanometer scale elucidates the operation of actively driven conducting, semiconducting, insulating and semi-insulating devices and systems. Spatial resolution of this analysis technique is shown to depend on the time required for the voltage measurement circuit to reach steady state with the local electric potential of the sample. Scanning voltage microscopy on actively biased buried heterostructure lasers reveals this time to be intrinsically long (10-2 s to 1 s) and to depend on material doping type (n- or p-type) and scan direction (to increasing or decreasing sample potential). The bandstructure of the probe-sample interface is examined and is shown to provide high incremental contact resistance to an equivalent circuit model of the measurement circuit. Practical scan speed limits are defined for accurate scanning electric potential measurements given a desired spatial resolution. © 2004 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0055865

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Nanoscopic electric potential probing: Influence of probe-sample interface on spatial resolution</title>
<author>
<name sortKey="Kuntze, S B" uniqKey="Kuntze S">S. B. Kuntze</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 Kings College Road, Toronto, Ontario, Canada M5S 3G4</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Institute for Microstructural Sciences, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6</s1>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Sargent, E H" uniqKey="Sargent E">E. H. Sargent</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 Kings College Road, Toronto, Ontario, Canada M5S 3G4</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dixon Warren, St J" uniqKey="Dixon Warren S">St. J. Dixon Warren</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Bookham Technology plc, 1-10 Brewer Hunt Way, Kanata, Ontario, Canada K2K 2B5</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="White, J K" uniqKey="White J">J. K. White</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Bookham Technology plc, 1-10 Brewer Hunt Way, Kanata, Ontario, Canada K2K 2B5</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Hinzer, K" uniqKey="Hinzer K">K. Hinzer</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Bookham Technology plc, 1-10 Brewer Hunt Way, Kanata, Ontario, Canada K2K 2B5</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Ban, D" uniqKey="Ban D">D. Ban</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 Kings College Road, Toronto, Ontario, Canada M5S 3G4</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">04-0055865</idno>
<date when="2004-01-26">2004-01-26</date>
<idno type="stanalyst">PASCAL 04-0055865 AIP</idno>
<idno type="RBID">Pascal:04-0055865</idno>
<idno type="wicri:Area/Main/Corpus">00C075</idno>
<idno type="wicri:Area/Main/Repository">00A848</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0003-6951</idno>
<title level="j" type="abbreviated">Appl. phys. lett.</title>
<title level="j" type="main">Applied physics letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Band structure</term>
<term>Electric potential</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Measuring methods</term>
<term>Scanning probe microscopy</term>
<term>Semiconductor lasers</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7361E</term>
<term>4255P</term>
<term>7320A</term>
<term>Etude expérimentale</term>
<term>Méthode mesure</term>
<term>Indium composé</term>
<term>Structure bande</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
<term>Potentiel électrique</term>
<term>Laser semiconducteur</term>
<term>Microscopie champ proche</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Electric potential probing on the nanometer scale elucidates the operation of actively driven conducting, semiconducting, insulating and semi-insulating devices and systems. Spatial resolution of this analysis technique is shown to depend on the time required for the voltage measurement circuit to reach steady state with the local electric potential of the sample. Scanning voltage microscopy on actively biased buried heterostructure lasers reveals this time to be intrinsically long (10
<sup>-2</sup>
s to 1 s) and to depend on material doping type (n- or p-type) and scan direction (to increasing or decreasing sample potential). The bandstructure of the probe-sample interface is examined and is shown to provide high incremental contact resistance to an equivalent circuit model of the measurement circuit. Practical scan speed limits are defined for accurate scanning electric potential measurements given a desired spatial resolution. © 2004 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0003-6951</s0>
</fA01>
<fA02 i1="01">
<s0>APPLAB</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. phys. lett.</s0>
</fA03>
<fA05>
<s2>84</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Nanoscopic electric potential probing: Influence of probe-sample interface on spatial resolution</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KUNTZE (S. B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SARGENT (E. H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DIXON WARREN (St. J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WHITE (J. K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>HINZER (K.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>BAN (D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 Kings College Road, Toronto, Ontario, Canada M5S 3G4</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Bookham Technology plc, 1-10 Brewer Hunt Way, Kanata, Ontario, Canada K2K 2B5</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute for Microstructural Sciences, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada K1A 0R6</s1>
</fA14>
<fA20>
<s1>601-603</s1>
</fA20>
<fA21>
<s1>2004-01-26</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10020</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2004 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>04-0055865</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Electric potential probing on the nanometer scale elucidates the operation of actively driven conducting, semiconducting, insulating and semi-insulating devices and systems. Spatial resolution of this analysis technique is shown to depend on the time required for the voltage measurement circuit to reach steady state with the local electric potential of the sample. Scanning voltage microscopy on actively biased buried heterostructure lasers reveals this time to be intrinsically long (10
<sup>-2</sup>
s to 1 s) and to depend on material doping type (n- or p-type) and scan direction (to increasing or decreasing sample potential). The bandstructure of the probe-sample interface is examined and is shown to provide high incremental contact resistance to an equivalent circuit model of the measurement circuit. Practical scan speed limits are defined for accurate scanning electric potential measurements given a desired spatial resolution. © 2004 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C61E</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C20A</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7361E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>4255P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7320A</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Méthode mesure</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Measuring methods</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Structure bande</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Band structure</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Potentiel électrique</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Electric potential</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Microscopie champ proche</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Scanning probe microscopy</s0>
</fC03>
<fN21>
<s1>033</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0404M000065</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00A848 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00A848 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:04-0055865
   |texte=   Nanoscopic electric potential probing: Influence of probe-sample interface on spatial resolution
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024