Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Integration of components in a 50-nm pseudomorphic In0.65Ga0.35As-In0.40Al0.60As-InP HEMT MMIC technology

Identifieur interne : 008973 ( Main/Repository ); précédent : 008972; suivant : 008974

Integration of components in a 50-nm pseudomorphic In0.65Ga0.35As-In0.40Al0.60As-InP HEMT MMIC technology

Auteurs : RBID : Pascal:06-0404447

Descripteurs français

English descriptors

Abstract

The basic active and passive elements for a 50-nm InGaAs-InAlAs-InP HEMT process with pseudomorphic InGaAs channel have been designed and realized. InP HEMTs with 50-nm gate length, metal-insulator-metal (MIM) capacitors and thin film resistors (TFRs) have been designed and fabricated. A 2 x 15 pm HEMT showed an extrinsic peak transconductance of 1130 mS/mm at a drain-source voltage of 2.0 V. A 2 x 35 μm HEMT exhibited a current gain cut-off frequency of 200 GHz and a power gain cut-off frequency of 310 GHz at a drain-source voltage of 1.1 V. Passive device results included 85 Ω/□ tantalum nitride TFRs and 300 pF/mm2 Si3N4 MIM capacitors. The integration of the components in a microstrip-based monolithic microwave integrated circuit (MMIC) process has been demonstrated by designing, processing and testing of a wideband resistive feedback amplifier.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:06-0404447

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Integration of components in a 50-nm pseudomorphic In
<sub>0.65</sub>
Ga
<sub>0.35</sub>
As-In
<sub>0.40</sub>
Al
<sub>0.60</sub>
As-InP HEMT MMIC technology</title>
<author>
<name sortKey="Malmkvist, Mikael" uniqKey="Malmkvist M">Mikael Malmkvist</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chalmers University of Technology, Department of Microtechnology and Nanoscience</s1>
<s2>412 96 Cöteborg</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>412 96 Cöteborg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mellberg, Anders" uniqKey="Mellberg A">Anders Mellberg</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chalmers University of Technology, Department of Microtechnology and Nanoscience</s1>
<s2>412 96 Cöteborg</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>412 96 Cöteborg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rorsman, Niklas" uniqKey="Rorsman N">Niklas Rorsman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chalmers University of Technology, Department of Microtechnology and Nanoscience</s1>
<s2>412 96 Cöteborg</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>412 96 Cöteborg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zirath, Herbert" uniqKey="Zirath H">Herbert Zirath</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chalmers University of Technology, Department of Microtechnology and Nanoscience</s1>
<s2>412 96 Cöteborg</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>412 96 Cöteborg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grahn, Jan" uniqKey="Grahn J">Jan Grahn</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chalmers University of Technology, Department of Microtechnology and Nanoscience</s1>
<s2>412 96 Cöteborg</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>412 96 Cöteborg</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">06-0404447</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0404447 INIST</idno>
<idno type="RBID">Pascal:06-0404447</idno>
<idno type="wicri:Area/Main/Corpus">008A39</idno>
<idno type="wicri:Area/Main/Repository">008973</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-1101</idno>
<title level="j" type="abbreviated">Solid-state electron.</title>
<title level="j" type="main">Solid-state electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active component</term>
<term>Binary compound</term>
<term>Capacitor</term>
<term>Current gain</term>
<term>Cut off frequency</term>
<term>Drain voltage</term>
<term>High electron mobility transistor</term>
<term>Indium phosphide</term>
<term>MIM devices</term>
<term>MIM structure</term>
<term>MMIC</term>
<term>Microstrip components</term>
<term>Noise figure</term>
<term>Passive component</term>
<term>Power gain</term>
<term>Pseudomorphic transistor</term>
<term>Reaction amplifier</term>
<term>Silicon nitride</term>
<term>Tantalum nitride</term>
<term>Thin film resistor</term>
<term>Transconductance</term>
<term>Voltage source</term>
<term>Wide band</term>
<term>Wideband amplifiers</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transistor mobilité électron élevée</term>
<term>Circuit MMIC</term>
<term>Composant actif</term>
<term>Composant passif</term>
<term>Transistor pseudomorphique</term>
<term>Dispositif MIM</term>
<term>Condensateur</term>
<term>Structure MIM</term>
<term>Résistance couche mince</term>
<term>Transconductance</term>
<term>Tension drain</term>
<term>Source tension</term>
<term>Gain courant</term>
<term>Fréquence coupure</term>
<term>Gain puissance</term>
<term>Composant microbande</term>
<term>Amplificateur large bande</term>
<term>Amplificateur réaction</term>
<term>Figure bruit</term>
<term>Large bande</term>
<term>Indium phosphure</term>
<term>Composé binaire</term>
<term>Tantale nitrure</term>
<term>Silicium nitrure</term>
<term>In P</term>
<term>InP</term>
<term>Pm</term>
<term>N Ta</term>
<term>TaN</term>
<term>N Si</term>
<term>Si3N4</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The basic active and passive elements for a 50-nm InGaAs-InAlAs-InP HEMT process with pseudomorphic InGaAs channel have been designed and realized. InP HEMTs with 50-nm gate length, metal-insulator-metal (MIM) capacitors and thin film resistors (TFRs) have been designed and fabricated. A 2 x 15 pm HEMT showed an extrinsic peak transconductance of 1130 mS/mm at a drain-source voltage of 2.0 V. A 2 x 35 μm HEMT exhibited a current gain cut-off frequency of 200 GHz and a power gain cut-off frequency of 310 GHz at a drain-source voltage of 1.1 V. Passive device results included 85 Ω/□ tantalum nitride TFRs and 300 pF/mm
<sup>2</sup>
Si
<sub>3</sub>
N
<sub>4</sub>
MIM capacitors. The integration of the components in a microstrip-based monolithic microwave integrated circuit (MMIC) process has been demonstrated by designing, processing and testing of a wideband resistive feedback amplifier.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-1101</s0>
</fA01>
<fA03 i2="1">
<s0>Solid-state electron.</s0>
</fA03>
<fA05>
<s2>50</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Integration of components in a 50-nm pseudomorphic In
<sub>0.65</sub>
Ga
<sub>0.35</sub>
As-In
<sub>0.40</sub>
Al
<sub>0.60</sub>
As-InP HEMT MMIC technology</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MALMKVIST (Mikael)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MELLBERG (Anders)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RORSMAN (Niklas)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZIRATH (Herbert)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>GRAHN (Jan)</s1>
</fA11>
<fA14 i1="01">
<s1>Chalmers University of Technology, Department of Microtechnology and Nanoscience</s1>
<s2>412 96 Cöteborg</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>858-864</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2888</s2>
<s5>354000115726590220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0404447</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid-state electronics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The basic active and passive elements for a 50-nm InGaAs-InAlAs-InP HEMT process with pseudomorphic InGaAs channel have been designed and realized. InP HEMTs with 50-nm gate length, metal-insulator-metal (MIM) capacitors and thin film resistors (TFRs) have been designed and fabricated. A 2 x 15 pm HEMT showed an extrinsic peak transconductance of 1130 mS/mm at a drain-source voltage of 2.0 V. A 2 x 35 μm HEMT exhibited a current gain cut-off frequency of 200 GHz and a power gain cut-off frequency of 310 GHz at a drain-source voltage of 1.1 V. Passive device results included 85 Ω/□ tantalum nitride TFRs and 300 pF/mm
<sup>2</sup>
Si
<sub>3</sub>
N
<sub>4</sub>
MIM capacitors. The integration of the components in a microstrip-based monolithic microwave integrated circuit (MMIC) process has been demonstrated by designing, processing and testing of a wideband resistive feedback amplifier.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F04</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03G02B</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03D</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03F09</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Transistor mobilité électron élevée</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>High electron mobility transistor</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Transistor movibilidad elevada electrones</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Circuit MMIC</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>MMIC</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Composant actif</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Active component</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Componente activo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Composant passif</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Passive component</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Componente pasivo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Transistor pseudomorphique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Pseudomorphic transistor</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Transistor pseudomórfico</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Dispositif MIM</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>MIM devices</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Condensateur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Capacitor</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Condensador</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Structure MIM</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>MIM structure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estructura MIM</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Résistance couche mince</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Thin film resistor</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Resistor capa delgada</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Transconductance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Transconductance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Transconductancia</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Tension drain</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Drain voltage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Tensión dren</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Source tension</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Voltage source</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Fuente voltaje</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Gain courant</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Current gain</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Ganancia corriente</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Fréquence coupure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Cut off frequency</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Frecuencia corte</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Gain puissance</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Power gain</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Aumento potencia</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Composant microbande</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Microstrip components</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Amplificateur large bande</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Wideband amplifiers</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Amplificateur réaction</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Reaction amplifier</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Amplificador reacción</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Figure bruit</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Noise figure</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Figura ruido</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Large bande</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Wide band</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Banda ancha</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Indium phosphure</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Tantale nitrure</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Tantalum nitride</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Tantalio nitruro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Silicium nitrure</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Silicon nitride</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Silicio nitruro</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Pm</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>N Ta</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>TaN</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>N Si</s0>
<s4>INC</s4>
<s5>87</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Si3N4</s0>
<s4>INC</s4>
<s5>88</s5>
</fC03>
<fN21>
<s1>268</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 008973 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 008973 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:06-0404447
   |texte=   Integration of components in a 50-nm pseudomorphic In0.65Ga0.35As-In0.40Al0.60As-InP HEMT MMIC technology
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024