Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Monolithic MQW InP-InGaAsP-Based Optical Comb Generator

Identifieur interne : 007F92 ( Main/Repository ); précédent : 007F91; suivant : 007F93

A Monolithic MQW InP-InGaAsP-Based Optical Comb Generator

Auteurs : RBID : Pascal:08-0045500

Descripteurs français

English descriptors

Abstract

We report the first demonstration of a monolithic optical-frequency comb generator. The device is based on multi-section quaternary/quaternary eight-quantum-well InP-InGaAsP material in a frequency-modulated (FM) laser design. The modulation is generated using quantum-confined Stark-effect phase-induced refractive index modulation to achieve fast modulation up to 24.4 GHz. The laser was fabricated using a single epitaxial growth step and quantum-well intermixing to realize low-loss phase adjustment and modulation sections. The output was quasicontinuous wave with intensity modulation at less than 20% for a total output power of 2 mW. The linewidth of each line was limited by the linewidth of the free running laser at an optimum of 25 MHz full-width at half-maximum. The comb generator produces a number of lines with a spacing exactly equal to the modulation frequency (or a multiple of it), differential phase noise between adjacent lines of -82 dBc/Hz at 1-kHz offset (modulation source-limited), and a potential comb spectrum width of up to 2 THz (15 nm), though the comb spectrum was not continuous across the full span.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0045500

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A Monolithic MQW InP-InGaAsP-Based Optical Comb Generator</title>
<author>
<name sortKey="Renaud, Cyril C" uniqKey="Renaud C">Cyril C. Renaud</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic and Electrical Engineering, University College London</s1>
<s2>London WC1E 7JE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>London WC1E 7JE</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pantouvaki, Marianna" uniqKey="Pantouvaki M">Marianna Pantouvaki</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>IMEC</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
<wicri:noRegion>IMEC</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gregoire, Sylvie" uniqKey="Gregoire S">Sylvie Gregoire</name>
<affiliation wicri:level="3">
<inist:fA14 i1="03">
<s1>École National Supérieure de Télécommunication</s1>
<s2>CS 83818-29238 Brest</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Brest</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lealman, Ian" uniqKey="Lealman I">Ian Lealman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Centre for Integrated Photonics</s1>
<s2>Ipswich IP5 3RE</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Centre for Integrated Photonics</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cannard, Paul" uniqKey="Cannard P">Paul Cannard</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Centre for Integrated Photonics</s1>
<s2>Ipswich IP5 3RE</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Centre for Integrated Photonics</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cole, Simon" uniqKey="Cole S">Simon Cole</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Centre for Integrated Photonics</s1>
<s2>Ipswich IP5 3RE</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Centre for Integrated Photonics</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moore, Ron" uniqKey="Moore R">Ron Moore</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Centre for Integrated Photonics</s1>
<s2>Ipswich IP5 3RE</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Centre for Integrated Photonics</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gwilliam, Russell" uniqKey="Gwilliam R">Russell Gwilliam</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Ion Beam Centre, University of Surrey</s1>
<s2>Guildford GU2 7RX</s2>
<s3>GBR</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Guildford GU2 7RX</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seeds, Alwyn J" uniqKey="Seeds A">Alwyn J. Seeds</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electronic and Electrical Engineering, University College London</s1>
<s2>London WC1E 7JE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>London WC1E 7JE</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">08-0045500</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 08-0045500 INIST</idno>
<idno type="RBID">Pascal:08-0045500</idno>
<idno type="wicri:Area/Main/Corpus">007010</idno>
<idno type="wicri:Area/Main/Repository">007F92</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0018-9197</idno>
<title level="j" type="abbreviated">IEEE j. quantum electron.</title>
<title level="j" type="main">IEEE journal of quantum electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compounds</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>Gallium phosphide</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Indium phosphide</term>
<term>Intensity modulation</term>
<term>Laser diodes</term>
<term>Line widths</term>
<term>Multiple quantum well</term>
<term>Optical frequency</term>
<term>Output power</term>
<term>Phase noise</term>
<term>Quantum wells</term>
<term>Quaternary compounds</term>
<term>Refractive index</term>
<term>Semiconductor lasers</term>
<term>Stark effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet Stark</term>
<term>Modulation intensité</term>
<term>Bruit phase</term>
<term>Laser semiconducteur</term>
<term>Diode laser</term>
<term>Etude expérimentale</term>
<term>Fréquence optique</term>
<term>Indice réfraction</term>
<term>Puissance sortie</term>
<term>Largeur raie</term>
<term>Puits quantique multiple</term>
<term>Puits quantique</term>
<term>Composé binaire</term>
<term>Phosphure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé quaternaire</term>
<term>Arséniure de gallium</term>
<term>Arséniure d'indium</term>
<term>Phosphure de gallium</term>
<term>InGaAsP</term>
<term>In P</term>
<term>As Ga In P</term>
<term>InP</term>
<term>4255P</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report the first demonstration of a monolithic optical-frequency comb generator. The device is based on multi-section quaternary/quaternary eight-quantum-well InP-InGaAsP material in a frequency-modulated (FM) laser design. The modulation is generated using quantum-confined Stark-effect phase-induced refractive index modulation to achieve fast modulation up to 24.4 GHz. The laser was fabricated using a single epitaxial growth step and quantum-well intermixing to realize low-loss phase adjustment and modulation sections. The output was quasicontinuous wave with intensity modulation at less than 20% for a total output power of 2 mW. The linewidth of each line was limited by the linewidth of the free running laser at an optimum of 25 MHz full-width at half-maximum. The comb generator produces a number of lines with a spacing exactly equal to the modulation frequency (or a multiple of it), differential phase noise between adjacent lines of -82 dBc/Hz at 1-kHz offset (modulation source-limited), and a potential comb spectrum width of up to 2 THz (15 nm), though the comb spectrum was not continuous across the full span.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-9197</s0>
</fA01>
<fA02 i1="01">
<s0>IEJQA7</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE j. quantum electron.</s0>
</fA03>
<fA05>
<s2>43</s2>
</fA05>
<fA06>
<s2>11-12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A Monolithic MQW InP-InGaAsP-Based Optical Comb Generator</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RENAUD (Cyril C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PANTOUVAKI (Marianna)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GREGOIRE (Sylvie)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LEALMAN (Ian)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CANNARD (Paul)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>COLE (Simon)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MOORE (Ron)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>GWILLIAM (Russell)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>SEEDS (Alwyn J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electronic and Electrical Engineering, University College London</s1>
<s2>London WC1E 7JE</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>IMEC</s1>
<s2>3001 Leuven</s2>
<s3>BEL</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>École National Supérieure de Télécommunication</s1>
<s2>CS 83818-29238 Brest</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Centre for Integrated Photonics</s1>
<s2>Ipswich IP5 3RE</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Ion Beam Centre, University of Surrey</s1>
<s2>Guildford GU2 7RX</s2>
<s3>GBR</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>998-1005</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222K</s2>
<s5>354000174441920050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0045500</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>IEEE journal of quantum electronics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report the first demonstration of a monolithic optical-frequency comb generator. The device is based on multi-section quaternary/quaternary eight-quantum-well InP-InGaAsP material in a frequency-modulated (FM) laser design. The modulation is generated using quantum-confined Stark-effect phase-induced refractive index modulation to achieve fast modulation up to 24.4 GHz. The laser was fabricated using a single epitaxial growth step and quantum-well intermixing to realize low-loss phase adjustment and modulation sections. The output was quasicontinuous wave with intensity modulation at less than 20% for a total output power of 2 mW. The linewidth of each line was limited by the linewidth of the free running laser at an optimum of 25 MHz full-width at half-maximum. The comb generator produces a number of lines with a spacing exactly equal to the modulation frequency (or a multiple of it), differential phase noise between adjacent lines of -82 dBc/Hz at 1-kHz offset (modulation source-limited), and a potential comb spectrum width of up to 2 THz (15 nm), though the comb spectrum was not continuous across the full span.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Effet Stark</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Stark effect</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Modulation intensité</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Intensity modulation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Bruit phase</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Phase noise</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Diode laser</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Laser diodes</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>30</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Fréquence optique</s0>
<s5>41</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Optical frequency</s0>
<s5>41</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Frecuencia óptica</s0>
<s5>41</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Indice réfraction</s0>
<s5>42</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Refractive index</s0>
<s5>42</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Puissance sortie</s0>
<s5>43</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Output power</s0>
<s5>43</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Potencia salida</s0>
<s5>43</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Largeur raie</s0>
<s5>44</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Line widths</s0>
<s5>44</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>47</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>47</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>47</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>48</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>48</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>51</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>51</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>51</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>52</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>52</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Composé quaternaire</s0>
<s5>53</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Quaternary compounds</s0>
<s5>53</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>54</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>54</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>55</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>55</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Phosphure de gallium</s0>
<s5>56</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Gallium phosphide</s0>
<s5>56</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Galio fosfuro</s0>
<s5>56</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>InGaAsP</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>As Ga In P</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>4255P</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fN21>
<s1>021</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007F92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 007F92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:08-0045500
   |texte=   A Monolithic MQW InP-InGaAsP-Based Optical Comb Generator
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024