Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Energy transfer and heat-treatment effect of photoluminescence in Eu3+ -doped TbPO4 nanowires

Identifieur interne : 007A42 ( Main/Repository ); précédent : 007A41; suivant : 007A43

Energy transfer and heat-treatment effect of photoluminescence in Eu3+ -doped TbPO4 nanowires

Auteurs : RBID : Pascal:07-0304466

Descripteurs français

English descriptors

Abstract

We have successfully synthesized Eu3+-doped TbPO4 nanowires, which are orderly organized to form bundle-like structure. A thermal treatment up to 600 °C does not modify the size, shape and structure of as-synthesized sample. Due to the energy overlap between Tb3 + and Eu3+, an efficient energy transfer occurs from Tb3+ to Eu3+. The effects of Eu3+ concentration and thermal treatment on the luminescent properties of Eu3 + are investigated. The increase of Eu3 + concentration leads to the increase of the energy transfer efficiency from Tb3+ to Eu3+, but also enhances the probability of the interaction between neighboring Eu3+, which results in the concentration quenching. With the heat-treatment, the luminescence of Eu3 + presents an obvious increase, but almost no change for the luminescence of Tb3+. This difference is explained based on the TGA, DTA, and fluorescent decay dynamics analyses.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0304466

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Energy transfer and heat-treatment effect of photoluminescence in Eu
<sup>3+</sup>
-doped TbPO
<sub>4</sub>
nanowires</title>
<author>
<name>WEIHUA DI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences</s1>
<s2>Changchun 130033</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Changchun</settlement>
<region type="province">Jilin</region>
<region type="groupement">Dongbei</region>
</placeName>
</affiliation>
</author>
<author>
<name>XIAOJUN WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences</s1>
<s2>Changchun 130033</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Changchun</settlement>
<region type="province">Jilin</region>
<region type="groupement">Dongbei</region>
</placeName>
</affiliation>
</author>
<author>
<name>PEIFENG ZHU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences</s1>
<s2>Changchun 130033</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Changchun</settlement>
<region type="province">Jilin</region>
<region type="groupement">Dongbei</region>
</placeName>
</affiliation>
</author>
<author>
<name>BAOJIU CHEN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Dalian Maritime University</s1>
<s2>Dalian 116026</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Dalian 116026</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">07-0304466</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0304466 INIST</idno>
<idno type="RBID">Pascal:07-0304466</idno>
<idno type="wicri:Area/Main/Corpus">007A99</idno>
<idno type="wicri:Area/Main/Repository">007A42</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-4596</idno>
<title level="j" type="abbreviated">J. solid state chem. : (Print)</title>
<title level="j" type="main">Journal of solid state chemistry : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Differential thermal analysis</term>
<term>Doping</term>
<term>Energy transfer</term>
<term>Experimental design</term>
<term>Heat transfer</term>
<term>Heat treatments</term>
<term>Hydrothermal synthesis</term>
<term>Indium additions</term>
<term>Luminescence</term>
<term>Luminescence decay</term>
<term>Nanostructured materials</term>
<term>Nanowires</term>
<term>Optical properties</term>
<term>Photoluminescence</term>
<term>Quantity ratio</term>
<term>Quenching</term>
<term>Thermal properties</term>
<term>Thermogravimetry</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Transfert énergie</term>
<term>Transfert chaleur</term>
<term>Photoluminescence</term>
<term>Addition indium</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Dopage</term>
<term>Traitement thermique</term>
<term>Plan expérience</term>
<term>Effet concentration</term>
<term>Propriété thermique</term>
<term>Luminescence</term>
<term>Trempe</term>
<term>Propriété optique</term>
<term>Thermogravimétrie</term>
<term>Analyse thermique différentielle</term>
<term>Déclin luminescence</term>
<term>Synthèse hydrothermale</term>
<term>TbPO4</term>
<term>7867L</term>
<term>8107V</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We have successfully synthesized Eu
<sup>3+</sup>
-doped TbPO
<sub>4</sub>
nanowires, which are orderly organized to form bundle-like structure. A thermal treatment up to 600 °C does not modify the size, shape and structure of as-synthesized sample. Due to the energy overlap between Tb
<sup>3</sup>
<sup>+</sup>
and Eu
<sup>3+</sup>
, an efficient energy transfer occurs from Tb
<sup>3+</sup>
to Eu
<sup>3+</sup>
. The effects of Eu
<sup>3+</sup>
concentration and thermal treatment on the luminescent properties of Eu
<sup>3</sup>
<sup>+</sup>
are investigated. The increase of Eu
<sup>3</sup>
<sup>+</sup>
concentration leads to the increase of the energy transfer efficiency from Tb
<sup>3+</sup>
to Eu
<sup>3+</sup>
, but also enhances the probability of the interaction between neighboring Eu
<sup>3+</sup>
, which results in the concentration quenching. With the heat-treatment, the luminescence of Eu3
<sup>+</sup>
presents an obvious increase, but almost no change for the luminescence of Tb
<sup>3+</sup>
. This difference is explained based on the TGA, DTA, and fluorescent decay dynamics analyses.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-4596</s0>
</fA01>
<fA02 i1="01">
<s0>JSSCBI</s0>
</fA02>
<fA03 i2="1">
<s0>J. solid state chem. : (Print)</s0>
</fA03>
<fA05>
<s2>180</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Energy transfer and heat-treatment effect of photoluminescence in Eu
<sup>3+</sup>
-doped TbPO
<sub>4</sub>
nanowires</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WEIHUA DI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>XIAOJUN WANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PEIFENG ZHU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BAOJIU CHEN</s1>
</fA11>
<fA14 i1="01">
<s1>Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences</s1>
<s2>Changchun 130033</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, Dalian Maritime University</s1>
<s2>Dalian 116026</s2>
<s3>CHN</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>467-473</s1>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14677</s2>
<s5>354000145594060090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0304466</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of solid state chemistry : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We have successfully synthesized Eu
<sup>3+</sup>
-doped TbPO
<sub>4</sub>
nanowires, which are orderly organized to form bundle-like structure. A thermal treatment up to 600 °C does not modify the size, shape and structure of as-synthesized sample. Due to the energy overlap between Tb
<sup>3</sup>
<sup>+</sup>
and Eu
<sup>3+</sup>
, an efficient energy transfer occurs from Tb
<sup>3+</sup>
to Eu
<sup>3+</sup>
. The effects of Eu
<sup>3+</sup>
concentration and thermal treatment on the luminescent properties of Eu
<sup>3</sup>
<sup>+</sup>
are investigated. The increase of Eu
<sup>3</sup>
<sup>+</sup>
concentration leads to the increase of the energy transfer efficiency from Tb
<sup>3+</sup>
to Eu
<sup>3+</sup>
, but also enhances the probability of the interaction between neighboring Eu
<sup>3+</sup>
, which results in the concentration quenching. With the heat-treatment, the luminescence of Eu3
<sup>+</sup>
presents an obvious increase, but almost no change for the luminescence of Tb
<sup>3+</sup>
. This difference is explained based on the TGA, DTA, and fluorescent decay dynamics analyses.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67L</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Transfert énergie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Energy transfer</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Transfert chaleur</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Heat transfer</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Doping</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Doping</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Traitement thermique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Heat treatments</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Plan expérience</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Experimental design</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Effet concentration</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Quantity ratio</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Propriété thermique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Thermal properties</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Luminescence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Luminescence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Trempe</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Quenching</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Thermogravimétrie</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Thermogravimetry</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Analyse thermique différentielle</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Differential thermal analysis</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Déclin luminescence</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Luminescence decay</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Decadencia luminiscencia</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Synthèse hydrothermale</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Hydrothermal synthesis</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>TbPO4</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>7867L</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fN21>
<s1>197</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007A42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 007A42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:07-0304466
   |texte=   Energy transfer and heat-treatment effect of photoluminescence in Eu3+ -doped TbPO4 nanowires
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024