Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Theory of spontaneous emission of quantum dots in the linear regime

Identifieur interne : 006E48 ( Main/Repository ); précédent : 006E47; suivant : 006E49

Theory of spontaneous emission of quantum dots in the linear regime

Auteurs : RBID : Pascal:07-0478615

Descripteurs français

English descriptors

Abstract

We develop a fully quantum-mechanical theory for the interaction of light and electron-hole excitations in semiconductor quantum dots. Our theoretical analysis results in an expression for the photoluminescence intensity of quantum dots in the linear regime. Taking into account the single-particle Hamiltonian, the free-photon Hamiltonian, the electron-hole interaction Hamiltonian, and the interaction of carriers with light, and applying the Heisenberg equation of motion to the photon number expectation values, to the carrier distribution functions and to the correlation term between the photon generation (destruction) and electron-hole pair, we obtain a set of luminescence equations. Under quasi-equilibrium conditions, these equations become a closed-set of equations. We solve them analytically, in the linear regime, and we find an approximate solution of the incoherent photoluminescence intensity. The validity of the theoretical analysis is tested by investigating the emission spectra in the high-temperature regime, interpreting the experimental findings for the emission spectra of a lens-shaped In0.5Ga0.5As self-assembled quantum dot. Our theoretical predictions for the interlevel spacing as well as for the dephasing time caused by electron-longitudinal optical phonon interactions are in good agreement with the experimental results.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0478615

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Theory of spontaneous emission of quantum dots in the linear regime</title>
<author>
<name sortKey="Zora, A" uniqKey="Zora A">A. Zora</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Physics Department, University of Athens, Panepistimiopolis, Zografos</s1>
<s2>15784, Athens</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>15784, Athens</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Simserides, C" uniqKey="Simserides C">C. Simserides</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Physics Department, University of Athens, Panepistimiopolis, Zografos</s1>
<s2>15784, Athens</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>15784, Athens</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Materials Science Department, University of Patras, Panepistimiopolis, Rio</s1>
<s2>26504, Patras</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>26504, Patras</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Triberis, G P" uniqKey="Triberis G">G. P. Triberis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Physics Department, University of Athens, Panepistimiopolis, Zografos</s1>
<s2>15784, Athens</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Grèce</country>
<wicri:noRegion>15784, Athens</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">07-0478615</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0478615 INIST</idno>
<idno type="RBID">Pascal:07-0478615</idno>
<idno type="wicri:Area/Main/Corpus">007281</idno>
<idno type="wicri:Area/Main/Repository">006E48</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0953-8984</idno>
<title level="j" type="abbreviated">J. phys., Condens. matter : (Print)</title>
<title level="j" type="main">Journal of physics. Condensed matter : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analytical method</term>
<term>Approximate method</term>
<term>Charge carrier generation</term>
<term>Electron hole pair</term>
<term>Electron interaction</term>
<term>Equations of motion</term>
<term>Excited states</term>
<term>Gallium arsenides</term>
<term>Hamiltonians</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Photoluminescence</term>
<term>Quantum dots</term>
<term>Quantum theory</term>
<term>Self-assembled layers</term>
<term>Semiconductor materials</term>
<term>Spontaneous emission</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Emission spontanée</term>
<term>Théorie quantique</term>
<term>Photoluminescence</term>
<term>Hamiltonien</term>
<term>Interaction électronique</term>
<term>Méthode analytique</term>
<term>Equation mouvement</term>
<term>Etat excité</term>
<term>Génération porteur charge</term>
<term>Paire électron trou</term>
<term>Méthode approchée</term>
<term>Point quantique</term>
<term>Semiconducteur</term>
<term>Couche autoassemblée</term>
<term>Indium arséniure</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We develop a fully quantum-mechanical theory for the interaction of light and electron-hole excitations in semiconductor quantum dots. Our theoretical analysis results in an expression for the photoluminescence intensity of quantum dots in the linear regime. Taking into account the single-particle Hamiltonian, the free-photon Hamiltonian, the electron-hole interaction Hamiltonian, and the interaction of carriers with light, and applying the Heisenberg equation of motion to the photon number expectation values, to the carrier distribution functions and to the correlation term between the photon generation (destruction) and electron-hole pair, we obtain a set of luminescence equations. Under quasi-equilibrium conditions, these equations become a closed-set of equations. We solve them analytically, in the linear regime, and we find an approximate solution of the incoherent photoluminescence intensity. The validity of the theoretical analysis is tested by investigating the emission spectra in the high-temperature regime, interpreting the experimental findings for the emission spectra of a lens-shaped In
<sub>0.5</sub>
Ga
<sub>0.5</sub>
As self-assembled quantum dot. Our theoretical predictions for the interlevel spacing as well as for the dephasing time caused by electron-longitudinal optical phonon interactions are in good agreement with the experimental results.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0953-8984</s0>
</fA01>
<fA02 i1="01">
<s0>JCOMEL</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., Condens. matter : (Print)</s0>
</fA03>
<fA05>
<s2>19</s2>
</fA05>
<fA06>
<s2>40</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Theory of spontaneous emission of quantum dots in the linear regime</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZORA (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SIMSERIDES (C.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TRIBERIS (G. P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Physics Department, University of Athens, Panepistimiopolis, Zografos</s1>
<s2>15784, Athens</s2>
<s3>GRC</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Materials Science Department, University of Patras, Panepistimiopolis, Rio</s1>
<s2>26504, Patras</s2>
<s3>GRC</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>406201.1-406201.9</s2>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>577E2</s2>
<s5>354000162564980030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>33 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0478615</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. Condensed matter : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We develop a fully quantum-mechanical theory for the interaction of light and electron-hole excitations in semiconductor quantum dots. Our theoretical analysis results in an expression for the photoluminescence intensity of quantum dots in the linear regime. Taking into account the single-particle Hamiltonian, the free-photon Hamiltonian, the electron-hole interaction Hamiltonian, and the interaction of carriers with light, and applying the Heisenberg equation of motion to the photon number expectation values, to the carrier distribution functions and to the correlation term between the photon generation (destruction) and electron-hole pair, we obtain a set of luminescence equations. Under quasi-equilibrium conditions, these equations become a closed-set of equations. We solve them analytically, in the linear regime, and we find an approximate solution of the incoherent photoluminescence intensity. The validity of the theoretical analysis is tested by investigating the emission spectra in the high-temperature regime, interpreting the experimental findings for the emission spectra of a lens-shaped In
<sub>0.5</sub>
Ga
<sub>0.5</sub>
As self-assembled quantum dot. Our theoretical predictions for the interlevel spacing as well as for the dephasing time caused by electron-longitudinal optical phonon interactions are in good agreement with the experimental results.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H67D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Emission spontanée</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Spontaneous emission</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Théorie quantique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Quantum theory</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Hamiltonien</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Hamiltonians</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Interaction électronique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Electron interaction</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Interacción electrónica</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Méthode analytique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Analytical method</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Método analítico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Equation mouvement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Equations of motion</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Etat excité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Excited states</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Génération porteur charge</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Charge carrier generation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Generación portador carga</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Paire électron trou</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Electron hole pair</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Par electrón hueco</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Méthode approchée</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Approximate method</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Método aproximado</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Couche autoassemblée</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Self-assembled layers</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>48</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>48</s5>
</fC03>
<fN21>
<s1>316</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006E48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 006E48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:07-0478615
   |texte=   Theory of spontaneous emission of quantum dots in the linear regime
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024