Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nonlinearities of PIN Photodiodes and PSPICE simulation

Identifieur interne : 004F08 ( Main/Repository ); précédent : 004F07; suivant : 004F09

Nonlinearities of PIN Photodiodes and PSPICE simulation

Auteurs : RBID : Pascal:09-0409926

Descripteurs français

English descriptors

Abstract

It is well known that the performance of modem photodiodes is determined by three basic parameters: sensitivity, response time and noise equivalent power (NEP). In practical situations it is almost always necessary to achieve the maximum product of sensitivity and reciprocal response time (bandwidth). At low Continuous Wave (CW) light incidence, a photodiode gives a signal proportional to optical intensity. But with increasing light power, photocurrent deviates from a linear behavior. High-linear performance is becoming increasingly important for photodiodes because high photocurrents directly translate into an increased dynamic range and reduced noise figure. This is crucial for many photonic systems, including photonic analog-to-digital converters and high-bit-rate digital receivers. The increase of photocurrent depends on two primary factors: one is space-charge limitations, which are influenced by device physical dimensions, structure type, illumination conditions, maximum electric field, and the other is thermal considerations. From the view of long-term reliability of photodiodes, thermal effects are crucial because it results in device failure due to dark current runaway. As known to us, there have many reports on the thermal effect originating from InGaAs intrinsic region. However, nonlinearity originating from both InGaAs intrinsic region and contact resistance is still unclear. In some cases, the contact resistance between metal electrode and semiconductor is not negligible. In this report, N type heavily doped InP single crystal is used as a substrate, on which a buffer layer of n doped InP is grown. Then the intrinsic absorbing layer of InGaAs, and finally a transparent InP cap layer are deposited with MOCVD technique. A circuit model has been developed and the nolinearities of PIN photodiodes has also been discussed.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0409926

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Nonlinearities of PIN Photodiodes and PSPICE simulation</title>
<author>
<name>YANLI ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Wuhan National Laboratory for Optoelectronics, School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology</s1>
<s2>Wuhan, Hubei Province 430074</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan, Hubei Province 430074</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">09-0409926</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0409926 INIST</idno>
<idno type="RBID">Pascal:09-0409926</idno>
<idno type="wicri:Area/Main/Corpus">005000</idno>
<idno type="wicri:Area/Main/Repository">004F08</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analog to digital converters</term>
<term>Binary compounds</term>
<term>Electric fields</term>
<term>Experimental study</term>
<term>Gallium Arsenides</term>
<term>III-V semiconductors</term>
<term>Indium Arsenides</term>
<term>Indium Phosphides</term>
<term>MOCVD</term>
<term>Monocrystals</term>
<term>Photocurrents</term>
<term>Photodiodes</term>
<term>Photonics</term>
<term>Reliability</term>
<term>Space charge</term>
<term>Temperature effects</term>
<term>Ternary compounds</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Courant photoélectrique</term>
<term>Charge espace</term>
<term>Champ électrique</term>
<term>Photodiode</term>
<term>Convertisseur analogique numérique</term>
<term>Etude expérimentale</term>
<term>Méthode MOCVD</term>
<term>Fiabilité</term>
<term>Monocristal</term>
<term>Composé ternaire</term>
<term>Gallium Arséniure</term>
<term>Indium Arséniure</term>
<term>Composé binaire</term>
<term>Semiconducteur III-V</term>
<term>Indium Phosphure</term>
<term>Effet température</term>
<term>As Ga In</term>
<term>In P</term>
<term>InGaAs</term>
<term>InP</term>
<term>0130C</term>
<term>Photonique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is well known that the performance of modem photodiodes is determined by three basic parameters: sensitivity, response time and noise equivalent power (NEP). In practical situations it is almost always necessary to achieve the maximum product of sensitivity and reciprocal response time (bandwidth). At low Continuous Wave (CW) light incidence, a photodiode gives a signal proportional to optical intensity. But with increasing light power, photocurrent deviates from a linear behavior. High-linear performance is becoming increasingly important for photodiodes because high photocurrents directly translate into an increased dynamic range and reduced noise figure. This is crucial for many photonic systems, including photonic analog-to-digital converters and high-bit-rate digital receivers. The increase of photocurrent depends on two primary factors: one is space-charge limitations, which are influenced by device physical dimensions, structure type, illumination conditions, maximum electric field, and the other is thermal considerations. From the view of long-term reliability of photodiodes, thermal effects are crucial because it results in device failure due to dark current runaway. As known to us, there have many reports on the thermal effect originating from InGaAs intrinsic region. However, nonlinearity originating from both InGaAs intrinsic region and contact resistance is still unclear. In some cases, the contact resistance between metal electrode and semiconductor is not negligible. In this report, N type heavily doped InP single crystal is used as a substrate, on which a buffer layer of n doped InP is grown. Then the intrinsic absorbing layer of InGaAs, and finally a transparent InP cap layer are deposited with MOCVD technique. A circuit model has been developed and the nolinearities of PIN photodiodes has also been discussed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7279</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Nonlinearities of PIN Photodiodes and PSPICE simulation</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Optoelectronic devices and integration : Photonics and Optoelectronics Meetings (POEM) 2008</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>YANLI ZHAO</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ZHANG (Liming)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>O'MAHONY (Mike J.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Wuhan National Laboratory for Optoelectronics, School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology</s1>
<s2>Wuhan, Hubei Province 430074</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>72790V.1-72790V.10</s2>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-7538-1</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000172962380300</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>12 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0409926</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>It is well known that the performance of modem photodiodes is determined by three basic parameters: sensitivity, response time and noise equivalent power (NEP). In practical situations it is almost always necessary to achieve the maximum product of sensitivity and reciprocal response time (bandwidth). At low Continuous Wave (CW) light incidence, a photodiode gives a signal proportional to optical intensity. But with increasing light power, photocurrent deviates from a linear behavior. High-linear performance is becoming increasingly important for photodiodes because high photocurrents directly translate into an increased dynamic range and reduced noise figure. This is crucial for many photonic systems, including photonic analog-to-digital converters and high-bit-rate digital receivers. The increase of photocurrent depends on two primary factors: one is space-charge limitations, which are influenced by device physical dimensions, structure type, illumination conditions, maximum electric field, and the other is thermal considerations. From the view of long-term reliability of photodiodes, thermal effects are crucial because it results in device failure due to dark current runaway. As known to us, there have many reports on the thermal effect originating from InGaAs intrinsic region. However, nonlinearity originating from both InGaAs intrinsic region and contact resistance is still unclear. In some cases, the contact resistance between metal electrode and semiconductor is not negligible. In this report, N type heavily doped InP single crystal is used as a substrate, on which a buffer layer of n doped InP is grown. Then the intrinsic absorbing layer of InGaAs, and finally a transparent InP cap layer are deposited with MOCVD technique. A circuit model has been developed and the nolinearities of PIN photodiodes has also been discussed.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Courant photoélectrique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photocurrents</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Charge espace</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Space charge</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Champ électrique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electric fields</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Photodiode</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Photodiodes</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Convertisseur analogique numérique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Analog to digital converters</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>29</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>29</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
<s5>30</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>MOCVD</s0>
<s5>30</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Fiabilité</s0>
<s5>41</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Reliability</s0>
<s5>41</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>47</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>47</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>53</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>53</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>54</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>54</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Indium Phosphure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>55</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium Phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>55</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Effet température</s0>
<s5>61</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Temperature effects</s0>
<s5>61</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Photonique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Photonics</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>299</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Photonics and Optoelectronics Meetings</s1>
<s3>Wuhan CHN</s3>
<s4>2008</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004F08 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 004F08 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:09-0409926
   |texte=   Nonlinearities of PIN Photodiodes and PSPICE simulation
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024