Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Striving for a standard protocol for preconditioning or stabilization of polycrystalline thin film photovoltaic modules

Identifieur interne : 004B48 ( Main/Repository ); précédent : 004B47; suivant : 004B49

Striving for a standard protocol for preconditioning or stabilization of polycrystalline thin film photovoltaic modules

Auteurs : RBID : Pascal:10-0114140

Descripteurs français

English descriptors

Abstract

Polycrystalline photovoltaic (PV) modules containing cadmium telluride (CdTe) or copper indium gallium diselenide (CIGS) thin film materials can exhibit substantial transient or metastable current-voltage (I-V) characteristics depending on prior exposure history. Transient I-V phenomena confound the accurate determination of module performance, their reliability, and their measured temperature coefficients, which can introduce error in energy ratings models or service-lifetime predictions. Indeed, for either of these two technologies, a unique performance metric may be illusory without first specifying recent exposure or state-even at standard test conditions. The current standard preconditioning procedure for thin-film PV modules was designed for amorphous silicon (a-Si), and is likely inadequate for CdTe and CIGS. For a-Si, the Staebler-Wronski effect is known to result from defects, created via breaking of weak silicon bonds or light-activated trapping at the device junction, occurring rapidly upon light-exposure. For CdTe and CIGS devices, there is less agreement on the causes of metastable behavior. The data suggests that either deep-trapping of charge carriers, or the migration and/or electronic activation of copper may be responsible. Because these are quite disparate mechanisms, we suspect that there may be a more practical preconditioning procedure that can be employed prior to accurate performance testing for CdTe and CIGS modules. We devise a test plan to examine and compare the effects of light soaking versus forward-biased dark exposure at elevated temperatures, as parallel strategies to determine a feasible standard protocol for preconditioning and stabilizing these polycrystalline PV technologies, and report on the results of our tests.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0114140

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Striving for a standard protocol for preconditioning or stabilization of polycrystalline thin film photovoltaic modules</title>
<author>
<name sortKey="Del Cueto, J A" uniqKey="Del Cueto J">J. A. Del Cueto</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Renewable Energy Laboratory 1617 Cole Blvd.</s1>
<s2>Golden, CO, 80401</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>National Renewable Energy Laboratory 1617 Cole Blvd.</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Deline, C A" uniqKey="Deline C">C. A. Deline</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Renewable Energy Laboratory 1617 Cole Blvd.</s1>
<s2>Golden, CO, 80401</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>National Renewable Energy Laboratory 1617 Cole Blvd.</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Albin, D S" uniqKey="Albin D">D. S. Albin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Renewable Energy Laboratory 1617 Cole Blvd.</s1>
<s2>Golden, CO, 80401</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>National Renewable Energy Laboratory 1617 Cole Blvd.</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rummel, S R" uniqKey="Rummel S">S. R. Rummel</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Renewable Energy Laboratory 1617 Cole Blvd.</s1>
<s2>Golden, CO, 80401</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>National Renewable Energy Laboratory 1617 Cole Blvd.</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Anderberg, A" uniqKey="Anderberg A">A. Anderberg</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>National Renewable Energy Laboratory 1617 Cole Blvd.</s1>
<s2>Golden, CO, 80401</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>National Renewable Energy Laboratory 1617 Cole Blvd.</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0114140</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 10-0114140 INIST</idno>
<idno type="RBID">Pascal:10-0114140</idno>
<idno type="wicri:Area/Main/Corpus">004938</idno>
<idno type="wicri:Area/Main/Repository">004B48</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cadmium tellurides</term>
<term>Copper Indium Gallium Selenides</term>
<term>Defect</term>
<term>Error</term>
<term>Lifetime</term>
<term>Light effect</term>
<term>Performance</term>
<term>Photovoltaic array</term>
<term>Photovoltaic system</term>
<term>Polycrystal</term>
<term>Reliability</term>
<term>Silicon</term>
<term>Stabilization</term>
<term>Staebler Wronski effect</term>
<term>Standard</term>
<term>Standard test</term>
<term>Test standard</term>
<term>Thin film</term>
<term>Voltage current curve</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Norme essai</term>
<term>Etalon</term>
<term>Stabilisation</term>
<term>Polycristal</term>
<term>Couche mince</term>
<term>Système photovoltaïque</term>
<term>Panneau solaire</term>
<term>Tellurure de cadmium</term>
<term>Cuivre Indium Gallium Séléniure</term>
<term>Caractéristique courant tension</term>
<term>Performance</term>
<term>Fiabilité</term>
<term>Erreur</term>
<term>Durée vie</term>
<term>Essai normalisé</term>
<term>Silicium</term>
<term>Effet Staebler Wronski</term>
<term>Défaut</term>
<term>Facteur photique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Polycrystalline photovoltaic (PV) modules containing cadmium telluride (CdTe) or copper indium gallium diselenide (CIGS) thin film materials can exhibit substantial transient or metastable current-voltage (I-V) characteristics depending on prior exposure history. Transient I-V phenomena confound the accurate determination of module performance, their reliability, and their measured temperature coefficients, which can introduce error in energy ratings models or service-lifetime predictions. Indeed, for either of these two technologies, a unique performance metric may be illusory without first specifying recent exposure or state-even at standard test conditions. The current standard preconditioning procedure for thin-film PV modules was designed for amorphous silicon (a-Si), and is likely inadequate for CdTe and CIGS. For a-Si, the Staebler-Wronski effect is known to result from defects, created via breaking of weak silicon bonds or light-activated trapping at the device junction, occurring rapidly upon light-exposure. For CdTe and CIGS devices, there is less agreement on the causes of metastable behavior. The data suggests that either deep-trapping of charge carriers, or the migration and/or electronic activation of copper may be responsible. Because these are quite disparate mechanisms, we suspect that there may be a more practical preconditioning procedure that can be employed prior to accurate performance testing for CdTe and CIGS modules. We devise a test plan to examine and compare the effects of light soaking versus forward-biased dark exposure at elevated temperatures, as parallel strategies to determine a feasible standard protocol for preconditioning and stabilizing these polycrystalline PV technologies, and report on the results of our tests.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7412</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Striving for a standard protocol for preconditioning or stabilization of polycrystalline thin film photovoltaic modules</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Reliability of photovoltaic cells, modules, components, and systems II : 3-6 August 2009, San Diego, California, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>DEL CUETO (J. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DELINE (C. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ALBIN (D. S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>RUMMEL (S. R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ANDERBERG (A.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>DHERE (Neelkanth G.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>WOHLGEMUTH (John)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>TON (Dan T.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>National Renewable Energy Laboratory 1617 Cole Blvd.</s1>
<s2>Golden, CO, 80401</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>741204.1-741204.12</s2>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-7702-6</s0>
</fA26>
<fA26 i1="02">
<s0>0-8194-7702-8</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000172986480030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0114140</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Polycrystalline photovoltaic (PV) modules containing cadmium telluride (CdTe) or copper indium gallium diselenide (CIGS) thin film materials can exhibit substantial transient or metastable current-voltage (I-V) characteristics depending on prior exposure history. Transient I-V phenomena confound the accurate determination of module performance, their reliability, and their measured temperature coefficients, which can introduce error in energy ratings models or service-lifetime predictions. Indeed, for either of these two technologies, a unique performance metric may be illusory without first specifying recent exposure or state-even at standard test conditions. The current standard preconditioning procedure for thin-film PV modules was designed for amorphous silicon (a-Si), and is likely inadequate for CdTe and CIGS. For a-Si, the Staebler-Wronski effect is known to result from defects, created via breaking of weak silicon bonds or light-activated trapping at the device junction, occurring rapidly upon light-exposure. For CdTe and CIGS devices, there is less agreement on the causes of metastable behavior. The data suggests that either deep-trapping of charge carriers, or the migration and/or electronic activation of copper may be responsible. Because these are quite disparate mechanisms, we suspect that there may be a more practical preconditioning procedure that can be employed prior to accurate performance testing for CdTe and CIGS modules. We devise a test plan to examine and compare the effects of light soaking versus forward-biased dark exposure at elevated temperatures, as parallel strategies to determine a feasible standard protocol for preconditioning and stabilizing these polycrystalline PV technologies, and report on the results of our tests.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D2</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Norme essai</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Test standard</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Norma ensayo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Etalon</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Standard</s0>
<s5>06</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Marco</s0>
<s5>06</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Stabilisation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Stabilization</s0>
<s5>07</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Estabilización</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Polycristal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Polycrystal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Policristal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>09</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Système photovoltaïque</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Photovoltaic system</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Sistema fotovoltaico</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Panneau solaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Photovoltaic array</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Panel solar</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Tellurure de cadmium</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Cadmium tellurides</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Cuivre Indium Gallium Séléniure</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Copper Indium Gallium Selenides</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Cobre Indio Galio Seleniuro</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Voltage current curve</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Característica corriente tensión</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Performance</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Performance</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Rendimiento</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Fiabilité</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Reliability</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Fiabilidad</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Erreur</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Error</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Error</s0>
<s5>20</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Durée vie</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Lifetime</s0>
<s5>21</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Tiempo vida</s0>
<s5>21</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Essai normalisé</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Standard test</s0>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Ensayo normalizado</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Silicio</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Effet Staebler Wronski</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Staebler Wronski effect</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Efecto Staebler Wronski</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Défaut</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Defect</s0>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Defecto</s0>
<s5>25</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Facteur photique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Light effect</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Factor fótico</s0>
<s5>30</s5>
</fC03>
<fN21>
<s1>075</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Reliability of photovoltaic cells, modules, components, and systems</s1>
<s2>02</s2>
<s3>San Diego CA USA</s3>
<s4>2009</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004B48 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 004B48 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0114140
   |texte=   Striving for a standard protocol for preconditioning or stabilization of polycrystalline thin film photovoltaic modules
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024