Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Density- and adhesion-controlled ZnO nanorod arrays on the ITO flexible substrates and their electrochromic performance

Identifieur interne : 004501 ( Main/Repository ); précédent : 004500; suivant : 004502

Density- and adhesion-controlled ZnO nanorod arrays on the ITO flexible substrates and their electrochromic performance

Auteurs : RBID : Pascal:10-0504524

Descripteurs français

English descriptors

Abstract

We report large-scale density- and adhesion-controlled ZnO nanorod arrays (NRs) directly grown on flexible ITO/PET substrates and have studied their absorption capability to viologen molecules and electrochromic performance. The density can be readily controlled by adjusting the thickness of pre-preparated ZnO seed layers. And the adhesion property of the ZnO NRs to substrates can be controlled by different methods of pre-preparation ZnO seed layer. The effect indicates that the ZnO NRs using sputtering-prepared seed layers show superior adhesion property to substrate and resistance capacity to ultrasonicating and bending when compared with the spin-coated method. Moreover, it has been found that the ZnO NRs, with optimum density and occupied space ratio (OSR) (density, ∼3.34 x 109 rods cm-2 ; diameter, ∼140 nm; and OSR, ∼52%), demonstrate optimal absorption capability to viologen molecules and excellent electrochromic performance.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0504524

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Density- and adhesion-controlled ZnO nanorod arrays on the ITO flexible substrates and their electrochromic performance</title>
<author>
<name>ANZHENG HU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Nanoscience and Nanotechnology, Central China Normal University</s1>
<s2>Wuhan 430079</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430079</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Physics and Electronic Engineering, Xiangfan University</s1>
<s2>Xiangfan 441053, Hubei</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xiangfan 441053, Hubei</wicri:noRegion>
</affiliation>
</author>
<author>
<name>FEI WU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Nanoscience and Nanotechnology, Central China Normal University</s1>
<s2>Wuhan 430079</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430079</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JINPING LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Nanoscience and Nanotechnology, Central China Normal University</s1>
<s2>Wuhan 430079</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430079</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIAN JIANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Nanoscience and Nanotechnology, Central China Normal University</s1>
<s2>Wuhan 430079</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430079</wicri:noRegion>
</affiliation>
</author>
<author>
<name>RUIMIN DING</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Nanoscience and Nanotechnology, Central China Normal University</s1>
<s2>Wuhan 430079</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430079</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XIN LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Nanoscience and Nanotechnology, Central China Normal University</s1>
<s2>Wuhan 430079</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430079</wicri:noRegion>
</affiliation>
</author>
<author>
<name>CUIXIA CHENG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Nanoscience and Nanotechnology, Central China Normal University</s1>
<s2>Wuhan 430079</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430079</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZHIHONG ZHU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Nanoscience and Nanotechnology, Central China Normal University</s1>
<s2>Wuhan 430079</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430079</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XINTANG HUANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Nanoscience and Nanotechnology, Central China Normal University</s1>
<s2>Wuhan 430079</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430079</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0504524</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0504524 INIST</idno>
<idno type="RBID">Pascal:10-0504524</idno>
<idno type="wicri:Area/Main/Corpus">003A79</idno>
<idno type="wicri:Area/Main/Repository">004501</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0925-8388</idno>
<title level="j" type="abbreviated">J. alloys compd.</title>
<title level="j" type="main">Journal of alloys and compounds</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adhesion</term>
<term>Arrays</term>
<term>Bending</term>
<term>Beryllium</term>
<term>Calcium nitride</term>
<term>Crystal seeds</term>
<term>Electro-optical effects</term>
<term>Electrochromism</term>
<term>Ethylene terephthalate polymer</term>
<term>Mechanical properties</term>
<term>Nanorod</term>
<term>Nanostructured materials</term>
<term>Spin-on coating</term>
<term>Sputter deposition</term>
<term>Sputtering</term>
<term>Thickness</term>
<term>Tribology</term>
<term>Viologen polymer</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Adhérence</term>
<term>Tribologie</term>
<term>Propriété mécanique</term>
<term>Nanomatériau</term>
<term>Réseau(arrangement)</term>
<term>Effet électrooptique</term>
<term>Electrochromisme</term>
<term>Ethylène téréphtalate polymère</term>
<term>Béryllium</term>
<term>Epaisseur</term>
<term>Germe cristallin</term>
<term>Dépôt pulvérisation</term>
<term>Pulvérisation irradiation</term>
<term>Flexion</term>
<term>Oxyde de zinc</term>
<term>Nanobâtonnet</term>
<term>Viologène polymère</term>
<term>Nitrure de calcium</term>
<term>Dépôt centrifugation</term>
<term>ZnO</term>
<term>Substrat oxyde d'indium et de zinc</term>
<term>Substrat InSnO</term>
<term>Substrat ZnO</term>
<term>8107V</term>
<term>6146</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Béryllium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report large-scale density- and adhesion-controlled ZnO nanorod arrays (NRs) directly grown on flexible ITO/PET substrates and have studied their absorption capability to viologen molecules and electrochromic performance. The density can be readily controlled by adjusting the thickness of pre-preparated ZnO seed layers. And the adhesion property of the ZnO NRs to substrates can be controlled by different methods of pre-preparation ZnO seed layer. The effect indicates that the ZnO NRs using sputtering-prepared seed layers show superior adhesion property to substrate and resistance capacity to ultrasonicating and bending when compared with the spin-coated method. Moreover, it has been found that the ZnO NRs, with optimum density and occupied space ratio (OSR) (density, ∼3.34 x 10
<sup>9</sup>
rods cm
<sup>-2</sup>
; diameter, ∼140 nm; and OSR, ∼52%), demonstrate optimal absorption capability to viologen molecules and excellent electrochromic performance.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>507</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Density- and adhesion-controlled ZnO nanorod arrays on the ITO flexible substrates and their electrochromic performance</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ANZHENG HU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FEI WU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>JINPING LIU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JIAN JIANG</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>RUIMIN DING</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>XIN LI</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>CUIXIA CHENG</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>ZHIHONG ZHU</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>XINTANG HUANG</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Nanoscience and Nanotechnology, Central China Normal University</s1>
<s2>Wuhan 430079</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Physics and Electronic Engineering, Xiangfan University</s1>
<s2>Xiangfan 441053, Hubei</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>261-266</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000192729220510</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0504524</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report large-scale density- and adhesion-controlled ZnO nanorod arrays (NRs) directly grown on flexible ITO/PET substrates and have studied their absorption capability to viologen molecules and electrochromic performance. The density can be readily controlled by adjusting the thickness of pre-preparated ZnO seed layers. And the adhesion property of the ZnO NRs to substrates can be controlled by different methods of pre-preparation ZnO seed layer. The effect indicates that the ZnO NRs using sputtering-prepared seed layers show superior adhesion property to substrate and resistance capacity to ultrasonicating and bending when compared with the spin-coated method. Moreover, it has been found that the ZnO NRs, with optimum density and occupied space ratio (OSR) (density, ∼3.34 x 10
<sup>9</sup>
rods cm
<sup>-2</sup>
; diameter, ∼140 nm; and OSR, ∼52%), demonstrate optimal absorption capability to viologen molecules and excellent electrochromic performance.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60A46</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Adhérence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Adhesion</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Tribologie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Tribology</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Propriété mécanique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Mechanical properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Réseau(arrangement)</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Arrays</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Effet électrooptique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Electro-optical effects</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Electrochromisme</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Electrochromism</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Ethylène téréphtalate polymère</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Ethylene terephthalate polymer</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Etileno tereftalato polímero</s0>
<s2>NK</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Béryllium</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Beryllium</s0>
<s2>NC</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Germe cristallin</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Crystal seeds</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Dépôt pulvérisation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Sputter deposition</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Pulvérisation irradiation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Sputtering</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Flexion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Bending</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nanobâtonnet</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Nanorod</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Nanopalito</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Viologène polymère</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Viologen polymer</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Viologeno polímero</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Nitrure de calcium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Calcium nitride</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Calcio nitruro</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Dépôt centrifugation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Spin-on coating</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Substrat oxyde d'indium et de zinc</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Substrat InSnO</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Substrat ZnO</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>6146</s0>
<s4>INC</s4>
<s5>66</s5>
</fC03>
<fN21>
<s1>341</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004501 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 004501 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0504524
   |texte=   Density- and adhesion-controlled ZnO nanorod arrays on the ITO flexible substrates and their electrochromic performance
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024