Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

ZnO-SnO2 composite anodes in extremely thin absorber layer (ETA) solar cells

Identifieur interne : 003559 ( Main/Repository ); précédent : 003558; suivant : 003560

ZnO-SnO2 composite anodes in extremely thin absorber layer (ETA) solar cells

Auteurs : RBID : Pascal:10-0515357

Descripteurs français

English descriptors

Abstract

ZnO-SnO2 composite electrodes have been deposited on fluorine-doped tin oxide (FTO) substrates by aerosol assisted chemical vapour deposition (AACVD) from a single source precursor solution. The electrodes were characterised using X-ray diffraction (XRD), atomic force microscopy (AFM), field emission gun scanning electron microscopy (FEGSEM) and energy dispersive X-ray analysis (EDX). The composite electrodes were used to construct ETA solar cells with the following structure; FrO/ZnO-SnO2/In2S3/PbS/PED-OT:PSS/Cgraphite/FTO. Performance of the cells were characterised by measuring the current-voltage (I-V) and incident photon to electron conversion efficiencies (IPCE). The effect of Zn:Sn ratio in the precursor and effect of post deposition annealing temperature on the morphology of the composite layers, in relation to the performance of the fabricated cells were investigated. The highest performing cells were fabricated using the composite anode deposited from 50:50 mol% Zn:Sn in the precursor with post deposition annealing at 400 °C. I-V characterisation under AM 1.5 solar simulated light reveals that the cell had an open circuit voltage (Voc) ∼ 0.32 V, short circuit current density (Jsc) ∼ 8.2 mA cm-2, a fill factor (FF) ∼0.26, an overall efficiency (η) ∼0.68% and a maximum IPCE ∼30%. The experimental IPCE agrees well with theoretically estimated IPCE when the PbS surface coverage is about 0.1-0.2.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0515357

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">ZnO-SnO
<sub>2</sub>
composite anodes in extremely thin absorber layer (ETA) solar cells</title>
<author>
<name sortKey="Dharmadasa, Ruvini" uniqKey="Dharmadasa R">Ruvini Dharmadasa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Loughborough University</s1>
<s2>Loughborough, LE11 3TU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Loughborough, LE11 3TU</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Upul Wijayantha, K G" uniqKey="Upul Wijayantha K">K. G. Upul Wijayantha</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Loughborough University</s1>
<s2>Loughborough, LE11 3TU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Loughborough, LE11 3TU</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tahir, Asif Ali" uniqKey="Tahir A">Asif Ali Tahir</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Loughborough University</s1>
<s2>Loughborough, LE11 3TU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Loughborough, LE11 3TU</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0515357</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0515357 INIST</idno>
<idno type="RBID">Pascal:10-0515357</idno>
<idno type="wicri:Area/Main/Corpus">003986</idno>
<idno type="wicri:Area/Main/Repository">003559</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1572-6657</idno>
<title level="j" type="abbreviated">J. electroanal. chem. : (1992)</title>
<title level="j" type="main">Journal of electroanalytical chemistry : (1992)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aerosols</term>
<term>Anode</term>
<term>Atomic force microscopy</term>
<term>Chemical vapor deposition</term>
<term>Composite electrode</term>
<term>Coverage rate</term>
<term>Electrode material</term>
<term>Energy-dispersive X-ray spectrometry</term>
<term>Field emission microscopy</term>
<term>Heavy metal</term>
<term>Indium Sulfides</term>
<term>Lead Sulfides</term>
<term>Modified material</term>
<term>Morphology</term>
<term>Photovoltaic conversion</term>
<term>Scanning electron microscopy</term>
<term>Solar cell</term>
<term>Surface structure</term>
<term>Tin IV Oxides</term>
<term>X ray diffraction</term>
<term>Zinc II Oxides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Zinc II Oxyde</term>
<term>Etain IV Oxyde</term>
<term>Anode</term>
<term>Cellule solaire</term>
<term>Aérosol</term>
<term>Plomb Sulfure</term>
<term>Dépôt chimique phase vapeur</term>
<term>Microscopie force atomique</term>
<term>Degré recouvrement</term>
<term>Microscopie électronique balayage</term>
<term>Microscopie émission champ</term>
<term>Spectrométrie RX dispersion énergie</term>
<term>Diffraction RX</term>
<term>Indium Sulfure</term>
<term>Conversion photovoltaïque</term>
<term>Matériau modifié</term>
<term>Matériau électrode</term>
<term>Métal lourd</term>
<term>Structure surface</term>
<term>Morphologie</term>
<term>Electrode composite</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Aérosol</term>
<term>Métal lourd</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">ZnO-SnO
<sub>2</sub>
composite electrodes have been deposited on fluorine-doped tin oxide (FTO) substrates by aerosol assisted chemical vapour deposition (AACVD) from a single source precursor solution. The electrodes were characterised using X-ray diffraction (XRD), atomic force microscopy (AFM), field emission gun scanning electron microscopy (FEGSEM) and energy dispersive X-ray analysis (EDX). The composite electrodes were used to construct ETA solar cells with the following structure; FrO/ZnO-SnO
<sub>2</sub>
/In
<sub>2</sub>
S
<sub>3</sub>
/PbS/PED-OT:PSS/C
<sub>graphite</sub>
/FTO. Performance of the cells were characterised by measuring the current-voltage (I-V) and incident photon to electron conversion efficiencies (IPCE). The effect of Zn:Sn ratio in the precursor and effect of post deposition annealing temperature on the morphology of the composite layers, in relation to the performance of the fabricated cells were investigated. The highest performing cells were fabricated using the composite anode deposited from 50:50 mol% Zn:Sn in the precursor with post deposition annealing at 400 °C. I-V characterisation under AM 1.5 solar simulated light reveals that the cell had an open circuit voltage (V
<sub>oc</sub>
) ∼ 0.32 V, short circuit current density (J
<sub>sc</sub>
) ∼ 8.2 mA cm
<sup>-2</sup>
, a fill factor (FF) ∼0.26, an overall efficiency (η) ∼0.68% and a maximum IPCE ∼30%. The experimental IPCE agrees well with theoretically estimated IPCE when the PbS surface coverage is about 0.1-0.2.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1572-6657</s0>
</fA01>
<fA03 i2="1">
<s0>J. electroanal. chem. : (1992)</s0>
</fA03>
<fA05>
<s2>646</s2>
</fA05>
<fA06>
<s2>1-2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>ZnO-SnO
<sub>2</sub>
composite anodes in extremely thin absorber layer (ETA) solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>DHARMADASA (Ruvini)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>UPUL WIJAYANTHA (K. G.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TAHIR (Asif Ali)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemistry, Loughborough University</s1>
<s2>Loughborough, LE11 3TU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>124-132</s1>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1150</s2>
<s5>354000193876620150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0515357</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of electroanalytical chemistry : (1992)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>ZnO-SnO
<sub>2</sub>
composite electrodes have been deposited on fluorine-doped tin oxide (FTO) substrates by aerosol assisted chemical vapour deposition (AACVD) from a single source precursor solution. The electrodes were characterised using X-ray diffraction (XRD), atomic force microscopy (AFM), field emission gun scanning electron microscopy (FEGSEM) and energy dispersive X-ray analysis (EDX). The composite electrodes were used to construct ETA solar cells with the following structure; FrO/ZnO-SnO
<sub>2</sub>
/In
<sub>2</sub>
S
<sub>3</sub>
/PbS/PED-OT:PSS/C
<sub>graphite</sub>
/FTO. Performance of the cells were characterised by measuring the current-voltage (I-V) and incident photon to electron conversion efficiencies (IPCE). The effect of Zn:Sn ratio in the precursor and effect of post deposition annealing temperature on the morphology of the composite layers, in relation to the performance of the fabricated cells were investigated. The highest performing cells were fabricated using the composite anode deposited from 50:50 mol% Zn:Sn in the precursor with post deposition annealing at 400 °C. I-V characterisation under AM 1.5 solar simulated light reveals that the cell had an open circuit voltage (V
<sub>oc</sub>
) ∼ 0.32 V, short circuit current density (J
<sub>sc</sub>
) ∼ 8.2 mA cm
<sup>-2</sup>
, a fill factor (FF) ∼0.26, an overall efficiency (η) ∼0.68% and a maximum IPCE ∼30%. The experimental IPCE agrees well with theoretically estimated IPCE when the PbS surface coverage is about 0.1-0.2.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Zinc II Oxyde</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Zinc II Oxides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Zinc II Óxido</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Etain IV Oxyde</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Tin IV Oxides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Estaño IV Óxido</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Anode</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Anode</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Anodo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Aérosol</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Aerosols</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Aerosol</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Plomb Sulfure</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Lead Sulfides</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Plomo Sulfuro</s0>
<s2>NC</s2>
<s2>FX</s2>
<s2>NA</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dépôt chimique phase vapeur</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Chemical vapor deposition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Depósito químico fase vapor</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Degré recouvrement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Coverage rate</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Grado recubrimiento</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Microscopie émission champ</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Field emission microscopy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Microscopía emisión campo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Spectrométrie RX dispersion énergie</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Energy-dispersive X-ray spectrometry</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Espectrometría RX dispersión energía</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Indium Sulfure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Indium Sulfides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Indio Sulfuro</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Conversion photovoltaïque</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Photovoltaic conversion</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Conversión fotovoltaica</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Matériau modifié</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Modified material</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Material modificado</s0>
<s5>32</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Matériau électrode</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Electrode material</s0>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Material electrodo</s0>
<s5>33</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Métal lourd</s0>
<s5>34</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Heavy metal</s0>
<s5>34</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Metal pesado</s0>
<s5>34</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Structure surface</s0>
<s5>35</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Surface structure</s0>
<s5>35</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estructura superficie</s0>
<s5>35</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Morphologie</s0>
<s5>36</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Morphology</s0>
<s5>36</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Morfología</s0>
<s5>36</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Electrode composite</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Composite electrode</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>347</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003559 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003559 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0515357
   |texte=   ZnO-SnO2 composite anodes in extremely thin absorber layer (ETA) solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024