Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Output power enhancements of nitride-based light-emitting diodes with inverted pyramid sidewalls structure

Identifieur interne : 002818 ( Main/Repository ); précédent : 002817; suivant : 002819

Output power enhancements of nitride-based light-emitting diodes with inverted pyramid sidewalls structure

Auteurs : RBID : Pascal:11-0106987

Descripteurs français

English descriptors

Abstract

This study presents nitride-based light-emitting diodes (LEDs) with inverted pyramid sidewalls by chemical wet etching nitride epitaxial layers and investigates the chemical wet etching mechanism of inverted pyramid sidewalls. It is well known that chemical etching solutions such as KOH, H2SO4 and H3PO4, to selectively etch the N-face GaN but not the Ga-face GaN. In this study, the N-face GaN was exposed around the chip by laser scribing at the GaN/sapphire interface. These channels provided paths for the chemical etchant to flow and allow the etching solution to further contact with and etch the exposed bottom N-face GaN. Chemical etching of the chip sidewalls formed the inverted hexagonal pyramid shape with {10 -1 -1} facets. Findings show that inverted pyramid sidewalls enhance 20 mA LED output power by 27% for LEDs, with chemical etching of the chip sidewalls for 4 min, compared to the conventional LED. The larger LED output power is attributed to increased light extraction efficiency by inverted pyramid sidewalls.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0106987

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Output power enhancements of nitride-based light-emitting diodes with inverted pyramid sidewalls structure</title>
<author>
<name sortKey="Chang, Li Chuan" uniqKey="Chang L">Li-Chuan Chang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Optics and Photonics, National Central University</s1>
<s2>Jhongli, Taoyuan 32001</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>Jhongli, Taoyuan 32001</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuo, Cheng Huang" uniqKey="Kuo C">Cheng-Huang Kuo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Lighting and Energy Photonics, National Chiao Tung University</s1>
<s2>Guiren, Tainan 71150</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>Guiren, Tainan 71150</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuo, Chi Wen" uniqKey="Kuo C">Chi-Wen Kuo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Optics and Photonics, National Central University</s1>
<s2>Jhongli, Taoyuan 32001</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>Jhongli, Taoyuan 32001</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0106987</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0106987 INIST</idno>
<idno type="RBID">Pascal:11-0106987</idno>
<idno type="wicri:Area/Main/Corpus">003606</idno>
<idno type="wicri:Area/Main/Repository">002818</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-1101</idno>
<title level="j" type="abbreviated">Solid-state electron.</title>
<title level="j" type="main">Solid-state electronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium oxide</term>
<term>Binary compound</term>
<term>Chemical etching</term>
<term>Engraving</term>
<term>Epitaxial film</term>
<term>Gallium nitride</term>
<term>Hexagonal shape</term>
<term>Indium nitride</term>
<term>Laser writing</term>
<term>Light emitting diode</term>
<term>MOCVD</term>
<term>Microelectronic fabrication</term>
<term>Micromachining</term>
<term>Multiple quantum well</term>
<term>Output power</term>
<term>Performance evaluation</term>
<term>Potassium hydroxide</term>
<term>Ternary compound</term>
<term>Wet process</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Puissance sortie</term>
<term>Diode électroluminescente</term>
<term>Attaque chimique</term>
<term>Procédé voie humide</term>
<term>Couche épitaxique</term>
<term>Ecriture laser</term>
<term>Gravure</term>
<term>Forme hexagonale</term>
<term>Evaluation performance</term>
<term>Méthode MOCVD</term>
<term>Hydroxyde de potassium</term>
<term>Nitrure de gallium</term>
<term>Composé binaire</term>
<term>Oxyde d'aluminium</term>
<term>Composé ternaire</term>
<term>Nitrure d'indium</term>
<term>Puits quantique multiple</term>
<term>Microusinage</term>
<term>Fabrication microélectronique</term>
<term>8107S</term>
<term>8115G</term>
<term>GaN</term>
<term>Al2O3</term>
<term>InGaN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This study presents nitride-based light-emitting diodes (LEDs) with inverted pyramid sidewalls by chemical wet etching nitride epitaxial layers and investigates the chemical wet etching mechanism of inverted pyramid sidewalls. It is well known that chemical etching solutions such as KOH, H
<sub>2</sub>
SO
<sub>4</sub>
and H
<sub>3</sub>
PO
<sub>4</sub>
, to selectively etch the N-face GaN but not the Ga-face GaN. In this study, the N-face GaN was exposed around the chip by laser scribing at the GaN/sapphire interface. These channels provided paths for the chemical etchant to flow and allow the etching solution to further contact with and etch the exposed bottom N-face GaN. Chemical etching of the chip sidewalls formed the inverted hexagonal pyramid shape with {10 -1 -1} facets. Findings show that inverted pyramid sidewalls enhance 20 mA LED output power by 27% for LEDs, with chemical etching of the chip sidewalls for 4 min, compared to the conventional LED. The larger LED output power is attributed to increased light extraction efficiency by inverted pyramid sidewalls.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-1101</s0>
</fA01>
<fA03 i2="1">
<s0>Solid-state electron.</s0>
</fA03>
<fA05>
<s2>56</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Output power enhancements of nitride-based light-emitting diodes with inverted pyramid sidewalls structure</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CHANG (Li-Chuan)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KUO (Cheng-Huang)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KUO (Chi-Wen)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Optics and Photonics, National Central University</s1>
<s2>Jhongli, Taoyuan 32001</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Lighting and Energy Photonics, National Chiao Tung University</s1>
<s2>Guiren, Tainan 71150</s2>
<s3>TWN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>8-12</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2888</s2>
<s5>354000193638530020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>15 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0106987</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid-state electronics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This study presents nitride-based light-emitting diodes (LEDs) with inverted pyramid sidewalls by chemical wet etching nitride epitaxial layers and investigates the chemical wet etching mechanism of inverted pyramid sidewalls. It is well known that chemical etching solutions such as KOH, H
<sub>2</sub>
SO
<sub>4</sub>
and H
<sub>3</sub>
PO
<sub>4</sub>
, to selectively etch the N-face GaN but not the Ga-face GaN. In this study, the N-face GaN was exposed around the chip by laser scribing at the GaN/sapphire interface. These channels provided paths for the chemical etchant to flow and allow the etching solution to further contact with and etch the exposed bottom N-face GaN. Chemical etching of the chip sidewalls formed the inverted hexagonal pyramid shape with {10 -1 -1} facets. Findings show that inverted pyramid sidewalls enhance 20 mA LED output power by 27% for LEDs, with chemical etching of the chip sidewalls for 4 min, compared to the conventional LED. The larger LED output power is attributed to increased light extraction efficiency by inverted pyramid sidewalls.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07S</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F17</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Puissance sortie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Output power</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Potencia salida</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Light emitting diode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Diodo electroluminescente</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Attaque chimique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Chemical etching</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Ataque químico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Procédé voie humide</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Wet process</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Procedimiento vía húmeda</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Couche épitaxique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Epitaxial film</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Capa epitáxica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Ecriture laser</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Laser writing</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Escritura láser</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Gravure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Engraving</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Grabado</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Forme hexagonale</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Hexagonal shape</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Forma hexagonal</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>MOCVD</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Hydroxyde de potassium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Potassium hydroxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Potasio hidróxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Oxyde d'aluminium</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Aluminium oxide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Aluminio óxido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>27</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>28</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Microusinage</s0>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Micromachining</s0>
<s5>46</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Micromaquinado</s0>
<s5>46</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Fabrication microélectronique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Microelectronic fabrication</s0>
<s5>47</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Fabricación microeléctrica</s0>
<s5>47</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>8107S</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>8115G</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Al2O3</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>InGaN</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>11</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Optoelectronic device</s0>
<s5>11</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Dispositivo optoelectrónico</s0>
<s5>11</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>12</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>12</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>12</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Composé III-VI</s0>
<s5>13</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>III-VI compound</s0>
<s5>13</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Compuesto III-VI</s0>
<s5>13</s5>
</fC07>
<fN21>
<s1>066</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002818 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002818 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0106987
   |texte=   Output power enhancements of nitride-based light-emitting diodes with inverted pyramid sidewalls structure
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024