Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effect of compression on electron transport and recombination in plastic Ti02 photoanodes

Identifieur interne : 002333 ( Main/Repository ); précédent : 002332; suivant : 002334

The effect of compression on electron transport and recombination in plastic Ti02 photoanodes

Auteurs : RBID : Pascal:12-0085120

Descripteurs français

English descriptors

Abstract

The compression method was applied for the preparation of plastic Ti02 porous films on a conductive indium-tin oxide (ITO)-coated polyethylene naphthalate (PEN) substrate at low temperature for the generation of high-efficiency plastic dye-sensitized solar cells (DSCs). The compression parameters. including pressure and time, were varied in order to determine their effect on the photovoltaic performance of the plastic DSCs. The results from electrochemical impedance spectroscopy (EIS) showed that charge transport resistance in the porous TiO2 films (R,) gradually decreased when the applied pressure was increased from 0 MPa to 150 MPa, which indicated a better connection between the TiO2 nanoparticles and electron transport in the TiO2 films. In addition, a longer press time led to an increased resistance of electron recombination (Rct) and an increased charge-collection efficiency. After optimization of the compression parameters, the efficiency of energy conversion was increased by approximately 81.6%. In addition, the efficiency of energy conversion was increased by an additional 4.65% under AM1.5 illumination.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0085120

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The effect of compression on electron transport and recombination in plastic Ti0
<sub>2</sub>
photoanodes</title>
<author>
<name>XIAOCHONG ZHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering. Tsinghua University</s1>
<s2>Beijing 100084</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>HONG LIN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering. Tsinghua University</s1>
<s2>Beijing 100084</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>XIN LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Pen-Tung Sah Micro-Nano Technology Research Center, Xiamen University</s1>
<s2>Xiamen 361005</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xiamen 361005</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIANBAO LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering. Tsinghua University</s1>
<s2>Beijing 100084</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0085120</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0085120 INIST</idno>
<idno type="RBID">Pascal:12-0085120</idno>
<idno type="wicri:Area/Main/Corpus">002222</idno>
<idno type="wicri:Area/Main/Repository">002333</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0013-4686</idno>
<title level="j" type="abbreviated">Electrochim. acta</title>
<title level="j" type="main">Electrochimica acta</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Charge carrier recombination</term>
<term>Compression</term>
<term>Dye-sensitized solar cell</term>
<term>Electrochemical impedance spectroscopy</term>
<term>Electron transfer</term>
<term>Ester polymer</term>
<term>Fabrication property relation</term>
<term>Flexible electrode</term>
<term>Indium tin oxide electrode</term>
<term>Naphthalate polymer</term>
<term>Photoanodes</term>
<term>Photoelectrode</term>
<term>Photovoltaic conversion</term>
<term>Plastics</term>
<term>Substrate</term>
<term>Thickness</term>
<term>Titanium IV Oxides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Compression</term>
<term>Recombinaison porteur charge</term>
<term>Transfert électron</term>
<term>Substrat</term>
<term>Titane IV Oxyde</term>
<term>Photoanode</term>
<term>Cellule solaire à colorant</term>
<term>Matière plastique</term>
<term>Electrode ITO</term>
<term>Electrode souple</term>
<term>Relation fabrication propriété</term>
<term>Spectrométrie impédance électrochimique</term>
<term>Conversion photovoltaïque</term>
<term>Epaisseur</term>
<term>Photoélectrode</term>
<term>Ester polymère</term>
<term>Naphtalate polymère</term>
<term>Ethylène naphtalate polymère</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Matière plastique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The compression method was applied for the preparation of plastic Ti0
<sub>2</sub>
porous films on a conductive indium-tin oxide (ITO)-coated polyethylene naphthalate (PEN) substrate at low temperature for the generation of high-efficiency plastic dye-sensitized solar cells (DSCs). The compression parameters. including pressure and time, were varied in order to determine their effect on the photovoltaic performance of the plastic DSCs. The results from electrochemical impedance spectroscopy (EIS) showed that charge transport resistance in the porous TiO
<sub>2</sub>
films (R,) gradually decreased when the applied pressure was increased from 0 MPa to 150 MPa, which indicated a better connection between the TiO
<sub>2</sub>
nanoparticles and electron transport in the TiO
<sub>2</sub>
films. In addition, a longer press time led to an increased resistance of electron recombination (R
<sub>ct</sub>
) and an increased charge-collection efficiency. After optimization of the compression parameters, the efficiency of energy conversion was increased by approximately 81.6%. In addition, the efficiency of energy conversion was increased by an additional 4.65% under AM1.5 illumination.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0013-4686</s0>
</fA01>
<fA02 i1="01">
<s0>ELCAAV</s0>
</fA02>
<fA03 i2="1">
<s0>Electrochim. acta</s0>
</fA03>
<fA05>
<s2>56</s2>
</fA05>
<fA06>
<s2>18</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The effect of compression on electron transport and recombination in plastic Ti0
<sub>2</sub>
photoanodes</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>XIAOCHONG ZHAO</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HONG LIN</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>XIN LI</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JIANBAO LI</s1>
</fA11>
<fA14 i1="01">
<s1>State Key Laboratory of New Ceramics and Fine Processing, Department of Material Science and Engineering. Tsinghua University</s1>
<s2>Beijing 100084</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Pen-Tung Sah Micro-Nano Technology Research Center, Xiamen University</s1>
<s2>Xiamen 361005</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>6401-6405</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1516</s2>
<s5>354000190443620200</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0085120</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Electrochimica acta</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The compression method was applied for the preparation of plastic Ti0
<sub>2</sub>
porous films on a conductive indium-tin oxide (ITO)-coated polyethylene naphthalate (PEN) substrate at low temperature for the generation of high-efficiency plastic dye-sensitized solar cells (DSCs). The compression parameters. including pressure and time, were varied in order to determine their effect on the photovoltaic performance of the plastic DSCs. The results from electrochemical impedance spectroscopy (EIS) showed that charge transport resistance in the porous TiO
<sub>2</sub>
films (R,) gradually decreased when the applied pressure was increased from 0 MPa to 150 MPa, which indicated a better connection between the TiO
<sub>2</sub>
nanoparticles and electron transport in the TiO
<sub>2</sub>
films. In addition, a longer press time led to an increased resistance of electron recombination (R
<sub>ct</sub>
) and an increased charge-collection efficiency. After optimization of the compression parameters, the efficiency of energy conversion was increased by approximately 81.6%. In addition, the efficiency of energy conversion was increased by an additional 4.65% under AM1.5 illumination.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Compression</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Compression</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Compresión</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Recombinaison porteur charge</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Charge carrier recombination</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Recombinación portador carga</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Transfert électron</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Electron transfer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Transferencia electrón</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Substrat</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Substrate</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Substrato</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Titane IV Oxyde</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Titanium IV Oxides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Titanio IV Óxido</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Photoanode</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Photoanodes</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Cellule solaire à colorant</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Dye-sensitized solar cell</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Célula solar sensibilizada tinte</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Matière plastique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Plastics</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Material plástico</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Electrode ITO</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Indium tin oxide electrode</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Electrodo ITO</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Electrode souple</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Flexible electrode</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Electrodo flexible</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Relation fabrication propriété</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Fabrication property relation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Relación fabricación propiedad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Spectrométrie impédance électrochimique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Electrochemical impedance spectroscopy</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Conversion photovoltaïque</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Photovoltaic conversion</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Conversión fotovoltaica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Photoélectrode</s0>
<s5>32</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Photoelectrode</s0>
<s5>32</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Fotoelectrodo</s0>
<s5>32</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Ester polymère</s0>
<s2>NK</s2>
<s5>33</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Ester polymer</s0>
<s2>NK</s2>
<s5>33</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Ester polímero</s0>
<s2>NK</s2>
<s5>33</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Naphtalate polymère</s0>
<s5>34</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Naphthalate polymer</s0>
<s5>34</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Naftalenodicarboxilato polímero</s0>
<s5>34</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Ethylène naphtalate polymère</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fN21>
<s1>065</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002333 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002333 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0085120
   |texte=   The effect of compression on electron transport and recombination in plastic Ti02 photoanodes
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024