Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism

Identifieur interne : 001D28 ( Main/Repository ); précédent : 001D27; suivant : 001D29

Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism

Auteurs : RBID : Pascal:13-0090637

Descripteurs français

English descriptors

Abstract

Perfluorooctanoic acid (C7F15COOH, PFOA) has increasingly attracted worldwide concerns due to its global occurrence and resistance to most conventional treatment processes. Though TiO2-based photocatalysis is strong enough to decompose most organics, it is not effective for PFOA decomposition. We first find that indium oxide (In2O3) possesses significant activity for PFOA decomposition under UV irradiation, with the rate constant about 8.4 times higher than that by TiO2. The major intermediates of PFOA were C2-C7 shorter-chain perfluorocarboxylic acids, implying that the reaction proceeded in a stepwise manner. By using diffuse reflectance infrared Fourier transform spectroscopy, 19F magic angle spinning nuclear magnetic resonance, and electron spin resonance, we demonstrate that the terminal carboxylate group of PFOA molecule tightly coordinates to the In2O3 surface in a bidentate or bridging configuration, which is beneficial for PFOA to be directly decomposed by photogenerated holes of In2O3 under UV irradiation, while PFOA coordinates to TiO2 in a monodentate mode, and photogenerated holes of TiO2 preferentially transform to hydroxyl radicals, which are inert to react with PFOA. PFOA decomposition in wastewater was inhibited by bicarbonate and other organic matters; however, their adverse impacts can be mostly avoided via pH adjustment and ozone addition.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0090637

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism</title>
<author>
<name>XIAOYUN LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University</s1>
<s2>Beijing 100084</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>PENGYI ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University</s1>
<s2>Beijing 100084</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>LING JIN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University</s1>
<s2>Beijing 100084</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>TIAN SHAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University</s1>
<s2>Beijing 100084</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>ZHENMIN LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University</s1>
<s2>Beijing 100084</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name>JUNJIE CAO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University</s1>
<s2>Beijing 100084</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0090637</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0090637 INIST</idno>
<idno type="RBID">Pascal:13-0090637</idno>
<idno type="wicri:Area/Main/Corpus">001250</idno>
<idno type="wicri:Area/Main/Repository">001D28</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0013-936X</idno>
<title level="j" type="abbreviated">Environ. sci. technol.</title>
<title level="j" type="main">Environmental science & technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carboxylic acid</term>
<term>Chemical reaction kinetics</term>
<term>EPR spectrometry</term>
<term>Emerging contaminant</term>
<term>Fourier-transformed infrared spectrometry</term>
<term>Indium oxide</term>
<term>NMR spectrometry</term>
<term>Organic fluorine compounds</term>
<term>Perfluorooctanoic acid</term>
<term>Photocatalysis</term>
<term>Photochemical degradation</term>
<term>Physicochemical purification</term>
<term>Reaction mechanism</term>
<term>Reflection spectrometry</term>
<term>Titanium oxide</term>
<term>Ultraviolet radiation</term>
<term>Waste water purification</term>
<term>Water treatment</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photocatalyse</term>
<term>Oxyde d'indium</term>
<term>Oxyde de titane</term>
<term>Rayonnement UV</term>
<term>Spectrométrie FTIR</term>
<term>Spectrométrie réflexion</term>
<term>Epuration eau usée</term>
<term>Epuration physicochimique</term>
<term>Traitement eau</term>
<term>Mécanisme réaction</term>
<term>Cinétique chimique</term>
<term>Spectrométrie RPE</term>
<term>Spectrométrie RMN</term>
<term>Dégradation photochimique</term>
<term>Acide carboxylique</term>
<term>Fluor composé organique</term>
<term>Acide perfluorooctanoïque</term>
<term>Polluant émergent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Perfluorooctanoic acid (C
<sub>7</sub>
F
<sub>15</sub>
COOH, PFOA) has increasingly attracted worldwide concerns due to its global occurrence and resistance to most conventional treatment processes. Though TiO
<sub>2</sub>
-based photocatalysis is strong enough to decompose most organics, it is not effective for PFOA decomposition. We first find that indium oxide (In
<sub>2</sub>
O
<sub>3</sub>
) possesses significant activity for PFOA decomposition under UV irradiation, with the rate constant about 8.4 times higher than that by TiO
<sub>2</sub>
. The major intermediates of PFOA were C
<sub>2</sub>
-C
<sub>7</sub>
shorter-chain perfluorocarboxylic acids, implying that the reaction proceeded in a stepwise manner. By using diffuse reflectance infrared Fourier transform spectroscopy,
<sup>19</sup>
F magic angle spinning nuclear magnetic resonance, and electron spin resonance, we demonstrate that the terminal carboxylate group of PFOA molecule tightly coordinates to the In
<sub>2</sub>
O
<sub>3</sub>
surface in a bidentate or bridging configuration, which is beneficial for PFOA to be directly decomposed by photogenerated holes of In
<sub>2</sub>
O
<sub>3</sub>
under UV irradiation, while PFOA coordinates to TiO
<sub>2</sub>
in a monodentate mode, and photogenerated holes of TiO
<sub>2</sub>
preferentially transform to hydroxyl radicals, which are inert to react with PFOA. PFOA decomposition in wastewater was inhibited by bicarbonate and other organic matters; however, their adverse impacts can be mostly avoided via pH adjustment and ozone addition.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0013-936X</s0>
</fA01>
<fA02 i1="01">
<s0>ESTHAG</s0>
</fA02>
<fA03 i2="1">
<s0>Environ. sci. technol.</s0>
</fA03>
<fA05>
<s2>46</s2>
</fA05>
<fA06>
<s2>10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>XIAOYUN LI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PENGYI ZHANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LING JIN</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>TIAN SHAO</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZHENMIN LI</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>JUNJIE CAO</s1>
</fA11>
<fA14 i1="01">
<s1>State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University</s1>
<s2>Beijing 100084</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>5528-5534</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13615</s2>
<s5>354000509897980370</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>54 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0090637</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Environmental science & technology</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Perfluorooctanoic acid (C
<sub>7</sub>
F
<sub>15</sub>
COOH, PFOA) has increasingly attracted worldwide concerns due to its global occurrence and resistance to most conventional treatment processes. Though TiO
<sub>2</sub>
-based photocatalysis is strong enough to decompose most organics, it is not effective for PFOA decomposition. We first find that indium oxide (In
<sub>2</sub>
O
<sub>3</sub>
) possesses significant activity for PFOA decomposition under UV irradiation, with the rate constant about 8.4 times higher than that by TiO
<sub>2</sub>
. The major intermediates of PFOA were C
<sub>2</sub>
-C
<sub>7</sub>
shorter-chain perfluorocarboxylic acids, implying that the reaction proceeded in a stepwise manner. By using diffuse reflectance infrared Fourier transform spectroscopy,
<sup>19</sup>
F magic angle spinning nuclear magnetic resonance, and electron spin resonance, we demonstrate that the terminal carboxylate group of PFOA molecule tightly coordinates to the In
<sub>2</sub>
O
<sub>3</sub>
surface in a bidentate or bridging configuration, which is beneficial for PFOA to be directly decomposed by photogenerated holes of In
<sub>2</sub>
O
<sub>3</sub>
under UV irradiation, while PFOA coordinates to TiO
<sub>2</sub>
in a monodentate mode, and photogenerated holes of TiO
<sub>2</sub>
preferentially transform to hydroxyl radicals, which are inert to react with PFOA. PFOA decomposition in wastewater was inhibited by bicarbonate and other organic matters; however, their adverse impacts can be mostly avoided via pH adjustment and ozone addition.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D16A05A</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Photocatalyse</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Photocatalysis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Fotocatálisis</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s1>ACT</s1>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s1>ACT</s1>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s1>ACT</s1>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s1>ACT</s1>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s1>ACT</s1>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s1>ACT</s1>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Rayonnement UV</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Ultraviolet radiation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Radiación ultravioleta</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Spectrométrie FTIR</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Fourier-transformed infrared spectrometry</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Espectrometría FTIR</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Spectrométrie réflexion</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Reflection spectrometry</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Espectrometría reflexión</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Epuration eau usée</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Waste water purification</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Depuración aguas servidas</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Epuration physicochimique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Physicochemical purification</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Depuración fisicoquímica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Traitement eau</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Water treatment</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Tratamiento agua</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Mécanisme réaction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Reaction mechanism</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mecanismo reacción</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Cinétique chimique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Chemical reaction kinetics</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Cinética química</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Spectrométrie RPE</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>EPR spectrometry</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Espectrometría RPE</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Spectrométrie RMN</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>NMR spectrometry</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Espectrometría RMN</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Dégradation photochimique</s0>
<s5>35</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Photochemical degradation</s0>
<s5>35</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Degradación fotoquímica</s0>
<s5>35</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Acide carboxylique</s0>
<s5>36</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Carboxylic acid</s0>
<s5>36</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Acido carboxílico</s0>
<s5>36</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Fluor composé organique</s0>
<s5>37</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Organic fluorine compounds</s0>
<s5>37</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Acide perfluorooctanoïque</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Perfluorooctanoic acid</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Ácido perfluorooctanoico</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Polluant émergent</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Emerging contaminant</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Contaminante emergente</s0>
<s4>CD</s4>
<s5>97</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Polluant organique persistant</s0>
<s5>43</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Persistent organic pollutant</s0>
<s5>43</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Contaminante organico persistente</s0>
<s5>43</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Composé organique</s0>
<s2>NA</s2>
<s5>44</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Organic compounds</s0>
<s2>NA</s2>
<s5>44</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Compuesto orgánico</s0>
<s2>NA</s2>
<s5>44</s5>
</fC07>
<fN21>
<s1>063</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D28 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001D28 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0090637
   |texte=   Efficient Photocatalytic Decomposition of Perfluorooctanoic Acid by Indium Oxide and Its Mechanism
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024