Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Improvement of ITO-free inverted polymer-based solar cells by using colloidal zinc oxide nanocrystals as electron-selective buffer layer

Identifieur interne : 001A40 ( Main/Repository ); précédent : 001A39; suivant : 001A41

Improvement of ITO-free inverted polymer-based solar cells by using colloidal zinc oxide nanocrystals as electron-selective buffer layer

Auteurs : RBID : Pascal:12-0421738

Descripteurs français

English descriptors

Abstract

In this study, we report on the improvement of ITO-free inverted polymer/fullerene solar cells by introducing a zinc oxide (ZnO) layer between the active layer and the cathode. The ZnO layers are deposited from solution, using colloidal ZnO nanocrystals with a rodlike shape, which are obtained using a wet-chemical synthesis route at low temperature. The nanocrystals are widely characterized with respect to their structural, optical, and electronic properties. In particular, simulations of powder X-ray diffraction data based on Rietveld refinement are shown to be a suitable method to characterize the average crystallite shape and particle size. Cyclic voltammetry reveals that nanocrystalline ZnO is an appropriate choice as electron-selective buffer layer in organic solar cells based on a bulk heterojunction of poly (3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). Using ITO-free inverted solar cells in substrate configuration with an opaque Cr/Al/ Cr bottom electrode, we demonstrate that introducing a cathodic interlayer of ZnO nanocrystals leads to a notable enhancement in photovoltaic performance. The magnitude of the effect is found to depend on the solvents used to process the active layer. In case of absorber blends processed from o-dichlorobenzene, we show an almost threefold increase in efficiency from 0.8 to 2.2% at an active area of 1 cm2.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0421738

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Improvement of ITO-free inverted polymer-based solar cells by using colloidal zinc oxide nanocrystals as electron-selective buffer layer</title>
<author>
<name sortKey="Wilken, Sebastian" uniqKey="Wilken S">Sebastian Wilken</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics, Energy and Semiconductor Research Laboratory, Carl von Ossietzky University of Oldenburg</s1>
<s2>26111 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
<wicri:noRegion>Carl von Ossietzky University of Oldenburg</wicri:noRegion>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scheunemann, Dorothea" uniqKey="Scheunemann D">Dorothea Scheunemann</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics, Energy and Semiconductor Research Laboratory, Carl von Ossietzky University of Oldenburg</s1>
<s2>26111 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
<wicri:noRegion>Carl von Ossietzky University of Oldenburg</wicri:noRegion>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wilkens, Verena" uniqKey="Wilkens V">Verena Wilkens</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics, Energy and Semiconductor Research Laboratory, Carl von Ossietzky University of Oldenburg</s1>
<s2>26111 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
<wicri:noRegion>Carl von Ossietzky University of Oldenburg</wicri:noRegion>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parisi, J Rgen" uniqKey="Parisi J">J Rgen Parisi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics, Energy and Semiconductor Research Laboratory, Carl von Ossietzky University of Oldenburg</s1>
<s2>26111 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
<wicri:noRegion>Carl von Ossietzky University of Oldenburg</wicri:noRegion>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Borchert, Holger" uniqKey="Borchert H">Holger Borchert</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Physics, Energy and Semiconductor Research Laboratory, Carl von Ossietzky University of Oldenburg</s1>
<s2>26111 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
<wicri:noRegion>Carl von Ossietzky University of Oldenburg</wicri:noRegion>
<wicri:noRegion>26111 Oldenburg</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0421738</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0421738 INIST</idno>
<idno type="RBID">Pascal:12-0421738</idno>
<idno type="wicri:Area/Main/Corpus">001670</idno>
<idno type="wicri:Area/Main/Repository">001A40</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1566-1199</idno>
<title level="j" type="abbreviated">Org. electron. : (Print)</title>
<title level="j" type="main">Organic electronics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Buffer layer</term>
<term>Butyric acid</term>
<term>Cathode</term>
<term>Chemical synthesis</term>
<term>Crystallites</term>
<term>Cyclic voltammetry</term>
<term>Doped materials</term>
<term>Electronic properties</term>
<term>Electronic structure</term>
<term>Ester</term>
<term>Fullerene compounds</term>
<term>Fullerenes</term>
<term>Growth from solution</term>
<term>Heterojunction</term>
<term>Heterostructures</term>
<term>Indium oxide</term>
<term>Interfacial layer</term>
<term>Interlayers</term>
<term>Low temperature</term>
<term>Nanocrystal</term>
<term>Optical characteristic</term>
<term>Optical properties</term>
<term>Organic solar cells</term>
<term>Oxide layer</term>
<term>Particle size</term>
<term>Photovoltaic effect</term>
<term>Powder</term>
<term>Rietveld method</term>
<term>Solar cell</term>
<term>Thiophene derivative polymer</term>
<term>Tin addition</term>
<term>X ray diffraction</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Addition étain</term>
<term>Cellule solaire organique</term>
<term>Couche active</term>
<term>Cathode</term>
<term>Méthode en solution</term>
<term>Synthèse chimique</term>
<term>Basse température</term>
<term>Caractéristique optique</term>
<term>Propriété optique</term>
<term>Structure électronique</term>
<term>Propriété électronique</term>
<term>Diffraction RX</term>
<term>Méthode Rietveld</term>
<term>Cristallite</term>
<term>Dimension particule</term>
<term>Voltammétrie cyclique</term>
<term>Hétérojonction</term>
<term>Cellule solaire</term>
<term>Couche intermédiaire</term>
<term>Couche interfaciale</term>
<term>Effet photovoltaïque</term>
<term>Oxyde d'indium</term>
<term>Oxyde de zinc</term>
<term>Nanocristal</term>
<term>Couche tampon</term>
<term>Fullerènes</term>
<term>Couche oxyde</term>
<term>Poudre</term>
<term>Hétérostructure</term>
<term>Thiophène dérivé polymère</term>
<term>Ester</term>
<term>Acide butyrique</term>
<term>Composé du fullerène</term>
<term>Matériau dopé</term>
<term>8105T</term>
<term>8116B</term>
<term>7867</term>
<term>7322</term>
<term>ITO</term>
<term>ZnO</term>
<term>7321</term>
<term>8245R</term>
<term>8460J</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study, we report on the improvement of ITO-free inverted polymer/fullerene solar cells by introducing a zinc oxide (ZnO) layer between the active layer and the cathode. The ZnO layers are deposited from solution, using colloidal ZnO nanocrystals with a rodlike shape, which are obtained using a wet-chemical synthesis route at low temperature. The nanocrystals are widely characterized with respect to their structural, optical, and electronic properties. In particular, simulations of powder X-ray diffraction data based on Rietveld refinement are shown to be a suitable method to characterize the average crystallite shape and particle size. Cyclic voltammetry reveals that nanocrystalline ZnO is an appropriate choice as electron-selective buffer layer in organic solar cells based on a bulk heterojunction of poly (3-hexylthiophene) (P3HT) and [6,6]-phenyl-C
<sub>61</sub>
-butyric acid methyl ester (PCBM). Using ITO-free inverted solar cells in substrate configuration with an opaque Cr/Al/ Cr bottom electrode, we demonstrate that introducing a cathodic interlayer of ZnO nanocrystals leads to a notable enhancement in photovoltaic performance. The magnitude of the effect is found to depend on the solvents used to process the active layer. In case of absorber blends processed from o-dichlorobenzene, we show an almost threefold increase in efficiency from 0.8 to 2.2% at an active area of 1 cm
<sup>2</sup>
.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1566-1199</s0>
</fA01>
<fA03 i2="1">
<s0>Org. electron. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Improvement of ITO-free inverted polymer-based solar cells by using colloidal zinc oxide nanocrystals as electron-selective buffer layer</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WILKEN (Sebastian)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHEUNEMANN (Dorothea)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WILKENS (Verena)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PARISI (Jürgen)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BORCHERT (Holger)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Physics, Energy and Semiconductor Research Laboratory, Carl von Ossietzky University of Oldenburg</s1>
<s2>26111 Oldenburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>2386-2394</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27255</s2>
<s5>354000509579360250</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>51 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0421738</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Organic electronics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this study, we report on the improvement of ITO-free inverted polymer/fullerene solar cells by introducing a zinc oxide (ZnO) layer between the active layer and the cathode. The ZnO layers are deposited from solution, using colloidal ZnO nanocrystals with a rodlike shape, which are obtained using a wet-chemical synthesis route at low temperature. The nanocrystals are widely characterized with respect to their structural, optical, and electronic properties. In particular, simulations of powder X-ray diffraction data based on Rietveld refinement are shown to be a suitable method to characterize the average crystallite shape and particle size. Cyclic voltammetry reveals that nanocrystalline ZnO is an appropriate choice as electron-selective buffer layer in organic solar cells based on a bulk heterojunction of poly (3-hexylthiophene) (P3HT) and [6,6]-phenyl-C
<sub>61</sub>
-butyric acid methyl ester (PCBM). Using ITO-free inverted solar cells in substrate configuration with an opaque Cr/Al/ Cr bottom electrode, we demonstrate that introducing a cathodic interlayer of ZnO nanocrystals leads to a notable enhancement in photovoltaic performance. The magnitude of the effect is found to depend on the solvents used to process the active layer. In case of absorber blends processed from o-dichlorobenzene, we show an almost threefold increase in efficiency from 0.8 to 2.2% at an active area of 1 cm
<sup>2</sup>
.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A20</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H67</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70A15</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cathode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Cathode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Cátodo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Méthode en solution</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Growth from solution</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Método en solución</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Synthèse chimique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Chemical synthesis</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Síntesis química</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Basse température</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Low temperature</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Baja temperatura</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Caractéristique optique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Optical characteristic</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Característica óptica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Propriété optique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Optical properties</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Propiedad óptica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Structure électronique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Electronic structure</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estructura electrónica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Méthode Rietveld</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Rietveld method</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Método Rietveld</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Cristallite</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Crystallites</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Cristalita</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Dimension particule</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Particle size</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Dimensión partícula</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Voltammétrie cyclique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Cyclic voltammetry</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Voltametría cíclica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Hétérojonction</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Heterojunction</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Heterounión</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Couche intermédiaire</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Interlayers</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Couche interfaciale</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Interfacial layer</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Capa interfacial</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Effet photovoltaïque</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Photovoltaic effect</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Efecto fotovoltaico</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Fullerènes</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Fullerenes</s0>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Couche oxyde</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Oxide layer</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Capa óxido</s0>
<s5>27</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Poudre</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Powder</s0>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Polvo</s0>
<s5>28</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>29</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="30" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>Ester</s0>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="ENG">
<s0>Ester</s0>
<s5>31</s5>
</fC03>
<fC03 i1="31" i2="X" l="SPA">
<s0>Ester</s0>
<s5>31</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>Acide butyrique</s0>
<s2>NK</s2>
<s5>32</s5>
</fC03>
<fC03 i1="32" i2="X" l="ENG">
<s0>Butyric acid</s0>
<s2>NK</s2>
<s5>32</s5>
</fC03>
<fC03 i1="32" i2="X" l="SPA">
<s0>Butírico ácido</s0>
<s2>NK</s2>
<s5>32</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>Composé du fullerène</s0>
<s5>33</s5>
</fC03>
<fC03 i1="33" i2="3" l="ENG">
<s0>Fullerene compounds</s0>
<s5>33</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="34" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="35" i2="X" l="FRE">
<s0>8105T</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>8116B</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="37" i2="X" l="FRE">
<s0>7867</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="38" i2="X" l="FRE">
<s0>7322</s0>
<s4>INC</s4>
<s5>59</s5>
</fC03>
<fC03 i1="39" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="40" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="41" i2="X" l="FRE">
<s0>7321</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="42" i2="X" l="FRE">
<s0>8245R</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="43" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fN21>
<s1>331</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A40 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001A40 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0421738
   |texte=   Improvement of ITO-free inverted polymer-based solar cells by using colloidal zinc oxide nanocrystals as electron-selective buffer layer
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024