Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Molecular Beam Epitaxy Growth of GaAs/InAs Core-Shell Nanowires and Fabrication of InAs Nanotubes

Identifieur interne : 001842 ( Main/Repository ); précédent : 001841; suivant : 001843

Molecular Beam Epitaxy Growth of GaAs/InAs Core-Shell Nanowires and Fabrication of InAs Nanotubes

Auteurs : RBID : Pascal:13-0003020

Descripteurs français

English descriptors

Abstract

We present results about the growth of GaAs/ InAs core-shell nanowires (NWs) using molecular beam epitaxy. The core is grown via the Ga droplet-assisted growth mechanism. For a homogeneous growth of the InAs shell, the As4 flux and substrate temperature are critical. The shell growth starts with InAs islands along the NW core, which increase in time and merge giving finally a continuous and smooth layer. At the top of the NWs, a small part of the core is free of InAs indicating a crystal phase selective growth. This allows a precise measurement of the shell thickness and the fabrication of InAs nanotubes by selective etching. The strain relaxation in the shell occurs mainly via the formation of misfit dislocations and saturates at ∼80%. Additionally, other types of defects are observed, namely stacking faults transferred from the core or formed in the shell, and threading dislocations.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0003020

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Molecular Beam Epitaxy Growth of GaAs/InAs Core-Shell Nanowires and Fabrication of InAs Nanotubes</title>
<author>
<name sortKey="Rieger, Torsten" uniqKey="Rieger T">Torsten Rieger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Peter Grunberg Institute 9, Forschungszentrum Jülich</s1>
<s2>52425 Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>52425 Jülich</wicri:noRegion>
<wicri:noRegion>Forschungszentrum Jülich</wicri:noRegion>
<wicri:noRegion>52425 Jülich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luysberg, Martina" uniqKey="Luysberg M">Martina Luysberg</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Peter Grünberg Institute 5, and, Forschungszentrum Jülich</s1>
<s2>52425 Jülich</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>52425 Jülich</wicri:noRegion>
<wicri:noRegion>Forschungszentrum Jülich</wicri:noRegion>
<wicri:noRegion>52425 Jülich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Emst Ruska-Centre (ER-C) for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich</s1>
<s2>52425 Jülich</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>52425 Jülich</wicri:noRegion>
<wicri:noRegion>Forschungszentrum Jülich</wicri:noRegion>
<wicri:noRegion>52425 Jülich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sch Pers, Thomas" uniqKey="Sch Pers T">Thomas Sch Pers</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Peter Grunberg Institute 9, Forschungszentrum Jülich</s1>
<s2>52425 Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>52425 Jülich</wicri:noRegion>
<wicri:noRegion>Forschungszentrum Jülich</wicri:noRegion>
<wicri:noRegion>52425 Jülich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Jülich Aachen Research Alliance for Fundamentals of Future Information Technology (JARA-FIT)</s1>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Jülich Aachen Research Alliance for Fundamentals of Future Information Technology (JARA-FIT)</wicri:noRegion>
<wicri:noRegion>Jülich Aachen Research Alliance for Fundamentals of Future Information Technology (JARA-FIT)</wicri:noRegion>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="05">
<s1>II. Institute of Physics, RWTH Aachen University</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Aix-la-Chapelle</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gr Tzmacher, Detlev" uniqKey="Gr Tzmacher D">Detlev Gr Tzmacher</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Peter Grunberg Institute 9, Forschungszentrum Jülich</s1>
<s2>52425 Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>52425 Jülich</wicri:noRegion>
<wicri:noRegion>Forschungszentrum Jülich</wicri:noRegion>
<wicri:noRegion>52425 Jülich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Jülich Aachen Research Alliance for Fundamentals of Future Information Technology (JARA-FIT)</s1>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Jülich Aachen Research Alliance for Fundamentals of Future Information Technology (JARA-FIT)</wicri:noRegion>
<wicri:noRegion>Jülich Aachen Research Alliance for Fundamentals of Future Information Technology (JARA-FIT)</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ion Lepsa, Mihail" uniqKey="Ion Lepsa M">Mihail Ion Lepsa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Peter Grunberg Institute 9, Forschungszentrum Jülich</s1>
<s2>52425 Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>52425 Jülich</wicri:noRegion>
<wicri:noRegion>Forschungszentrum Jülich</wicri:noRegion>
<wicri:noRegion>52425 Jülich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Jülich Aachen Research Alliance for Fundamentals of Future Information Technology (JARA-FIT)</s1>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>Jülich Aachen Research Alliance for Fundamentals of Future Information Technology (JARA-FIT)</wicri:noRegion>
<wicri:noRegion>Jülich Aachen Research Alliance for Fundamentals of Future Information Technology (JARA-FIT)</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0003020</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 13-0003020 INIST</idno>
<idno type="RBID">Pascal:13-0003020</idno>
<idno type="wicri:Area/Main/Corpus">001513</idno>
<idno type="wicri:Area/Main/Repository">001842</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Core shell structure</term>
<term>Critical temperature</term>
<term>Crystal growth</term>
<term>Droplets</term>
<term>Gallium</term>
<term>Gallium arsenides</term>
<term>Growth mechanism</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Mechanical properties</term>
<term>Misfit dislocations</term>
<term>Molecular beam epitaxy</term>
<term>Nanostructured materials</term>
<term>Nanotubes</term>
<term>Nanowires</term>
<term>Selective etching</term>
<term>Selective growth</term>
<term>Stacking faults</term>
<term>Stress relaxation</term>
<term>Threading dislocation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Epitaxie jet moléculaire</term>
<term>Mécanisme croissance</term>
<term>Arséniure de gallium</term>
<term>Composé III-V</term>
<term>Semiconducteur III-V</term>
<term>Arséniure d'indium</term>
<term>Structure coeur couche</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Nanotube</term>
<term>Gouttelette</term>
<term>Température critique</term>
<term>Croissance cristalline</term>
<term>Croissance sélective</term>
<term>Gallium</term>
<term>Gravure sélective</term>
<term>Relaxation contrainte</term>
<term>Propriété mécanique</term>
<term>Dislocation interfaciale</term>
<term>Défaut empilement</term>
<term>Dislocation filetée</term>
<term>GaAs</term>
<term>InAs</term>
<term>8107V</term>
<term>8107B</term>
<term>8107D</term>
<term>6225</term>
<term>Structure coeur coque</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We present results about the growth of GaAs/ InAs core-shell nanowires (NWs) using molecular beam epitaxy. The core is grown via the Ga droplet-assisted growth mechanism. For a homogeneous growth of the InAs shell, the As
<sub>4</sub>
flux and substrate temperature are critical. The shell growth starts with InAs islands along the NW core, which increase in time and merge giving finally a continuous and smooth layer. At the top of the NWs, a small part of the core is free of InAs indicating a crystal phase selective growth. This allows a precise measurement of the shell thickness and the fabrication of InAs nanotubes by selective etching. The strain relaxation in the shell occurs mainly via the formation of misfit dislocations and saturates at ∼80%. Additionally, other types of defects are observed, namely stacking faults transferred from the core or formed in the shell, and threading dislocations.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>12</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Molecular Beam Epitaxy Growth of GaAs/InAs Core-Shell Nanowires and Fabrication of InAs Nanotubes</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RIEGER (Torsten)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LUYSBERG (Martina)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCHÄPERS (Thomas)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GRÜTZMACHER (Detlev)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ION LEPSA (Mihail)</s1>
</fA11>
<fA14 i1="01">
<s1>Peter Grunberg Institute 9, Forschungszentrum Jülich</s1>
<s2>52425 Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Peter Grünberg Institute 5, and, Forschungszentrum Jülich</s1>
<s2>52425 Jülich</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Emst Ruska-Centre (ER-C) for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich</s1>
<s2>52425 Jülich</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Jülich Aachen Research Alliance for Fundamentals of Future Information Technology (JARA-FIT)</s1>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>II. Institute of Physics, RWTH Aachen University</s1>
<s2>52074 Aachen</s2>
<s3>DEU</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>5559-5564</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000502937790190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0003020</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We present results about the growth of GaAs/ InAs core-shell nanowires (NWs) using molecular beam epitaxy. The core is grown via the Ga droplet-assisted growth mechanism. For a homogeneous growth of the InAs shell, the As
<sub>4</sub>
flux and substrate temperature are critical. The shell growth starts with InAs islands along the NW core, which increase in time and merge giving finally a continuous and smooth layer. At the top of the NWs, a small part of the core is free of InAs indicating a crystal phase selective growth. This allows a precise measurement of the shell thickness and the fabrication of InAs nanotubes by selective etching. The strain relaxation in the shell occurs mainly via the formation of misfit dislocations and saturates at ∼80%. Additionally, other types of defects are observed, namely stacking faults transferred from the core or formed in the shell, and threading dislocations.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07D</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60B25</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Structure coeur couche</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Core shell structure</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Nanotube</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Nanotubes</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Gouttelette</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Droplets</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Température critique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Critical temperature</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Croissance cristalline</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Crystal growth</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Croissance sélective</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Selective growth</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Gravure sélective</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Selective etching</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Grabado selectivo</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Relaxation contrainte</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Stress relaxation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Propriété mécanique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Mechanical properties</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Dislocation interfaciale</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Misfit dislocations</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Défaut empilement</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Stacking faults</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Dislocation filetée</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Threading dislocation</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Dislocación aterrajada</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8107D</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>6225</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Structure coeur coque</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Core shell structure</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="28" i2="3" l="SPA">
<s0>Estructura núcleo cascarón</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>007</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001842 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001842 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0003020
   |texte=   Molecular Beam Epitaxy Growth of GaAs/InAs Core-Shell Nanowires and Fabrication of InAs Nanotubes
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024