Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

UV- and Visible-Light Photocatalytic Activity of Simultaneously Deposited and Doped Ag/Ag(I)-TiO2 Photocatalyst

Identifieur interne : 001297 ( Main/Repository ); précédent : 001296; suivant : 001298

UV- and Visible-Light Photocatalytic Activity of Simultaneously Deposited and Doped Ag/Ag(I)-TiO2 Photocatalyst

Auteurs : RBID : Pascal:12-0397790

Descripteurs français

English descriptors

Abstract

Ag modification has been demonstrated to be an efficient strategy to improve the photocatalytic performance of TiO2 photocatalysts. However, the previous studies about the Ag modification are only restricted to the surface loading of metallic Ag or Ag(I) doping, investigations have seldom been focused on the simultaneously deposited and doped Ag/ Ag(I)-TiO2 photocatalyst. In this study, Ag/Ag(I)-TiO2 photocatalyst was prepared by a facile impregnated method in combination with a calcination process (450 °C) and the photocatalytic activity was evaluated by the photocatalytic decomposition of methyl orange and phenol solutions under both UV-and visible-light irradiation, respectively. It was found that Ag(I) doping resulted in the formation of an isolated energy level of Ag 4d in the band gap of TiO2. On the basis of band-structure analysis of Ag/Ag(I)-TiO2 photocatalyst, a possible photocatalytic mechanism was proposed to account for the different UV- and visible-light photocatalytic activities. Under visible-light irradiation, the isolated energy level of Ag 4d contributes to the visible-light absorption while the surface metallic Ag promotes the effective separation of the following photogenerated electrons and holes in the Ag/Ag(I)-TiO2 nanoparticles, resulting in a higher visible-light photocatalytic activity than the one-component Ag-modified TiO2 (such as Ag(I)-TiO2 and Ag/TiO2). Under UV-light irradiation, the doping energy level of Ag(I) ions in the band gap of TiO2 acts as the recombination center of photogenerated electrons and holes, leading to a lower photocatalytic performance of Ag-doped TiO2 (such as Ag/Ag(I)-TiO2 and Ag(I)-TiO2) than the corresponding undoped photocatalysts (such as Ag/TiO, and TiO2). Considering the well controllable preparation of various Ag-modified TiO2 (such as TiO2, Ag/TiO2, Ag(I)-TiO2, and Ag/Ag(I)-TiO2), this work may provide some insight into the smart design of novel and high-efficiency photocatalytic materials.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0397790

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">UV- and Visible-Light Photocatalytic Activity of Simultaneously Deposited and Doped Ag/Ag(I)-TiO
<sub>2</sub>
Photocatalyst</title>
<author>
<name>RUI LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, School of Science, Wuhan University of Technology</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430070</wicri:noRegion>
</affiliation>
</author>
<author>
<name>PING WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, School of Science, Wuhan University of Technology</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430070</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XUEFEI WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, School of Science, Wuhan University of Technology</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430070</wicri:noRegion>
</affiliation>
</author>
<author>
<name>HUOGEN YU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, School of Science, Wuhan University of Technology</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430070</wicri:noRegion>
</affiliation>
</author>
<author>
<name>JIAGUO YU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Wuhan 430070</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0397790</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0397790 INIST</idno>
<idno type="RBID">Pascal:12-0397790</idno>
<idno type="wicri:Area/Main/Corpus">001742</idno>
<idno type="wicri:Area/Main/Repository">001297</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1932-7447</idno>
<title level="j" type="abbreviated">J. phys. chem., C</title>
<title level="j" type="main">Journal of physical chemistry. C</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arsenic addition</term>
<term>Band structure</term>
<term>Calcining</term>
<term>Catalyst</term>
<term>Catalyst activity</term>
<term>Doping</term>
<term>Electronic properties</term>
<term>Electronic structure</term>
<term>Energy gap</term>
<term>Energy level</term>
<term>Heat of formation</term>
<term>Illumination</term>
<term>Indium addition</term>
<term>Light absorption</term>
<term>Methyl orange</term>
<term>Nanoparticle</term>
<term>Nanostructured materials</term>
<term>Phenol</term>
<term>Phenols</term>
<term>Photocatalysis</term>
<term>Silver addition</term>
<term>Ultraviolet irradiation</term>
<term>Ultraviolet radiation</term>
<term>Visible radiation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Rayonnement UV</term>
<term>Rayonnement visible</term>
<term>Activité catalytique</term>
<term>Photocatalyse</term>
<term>Dopage</term>
<term>Catalyseur</term>
<term>Addition argent</term>
<term>Calcination</term>
<term>Orangé méthyle</term>
<term>Phénol</term>
<term>Phénols</term>
<term>Irradiation UV</term>
<term>Addition indium</term>
<term>Chaleur formation</term>
<term>Niveau énergie</term>
<term>Bande interdite</term>
<term>Propriété électronique</term>
<term>Structure bande</term>
<term>Structure électronique</term>
<term>Eclairement</term>
<term>Absorption lumière</term>
<term>Nanoparticule</term>
<term>Nanomatériau</term>
<term>Addition arsenic</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ag modification has been demonstrated to be an efficient strategy to improve the photocatalytic performance of TiO
<sub>2</sub>
photocatalysts. However, the previous studies about the Ag modification are only restricted to the surface loading of metallic Ag or Ag(I) doping, investigations have seldom been focused on the simultaneously deposited and doped Ag/ Ag(I)-TiO
<sub>2</sub>
photocatalyst. In this study, Ag/Ag(I)-TiO
<sub>2</sub>
photocatalyst was prepared by a facile impregnated method in combination with a calcination process (450 °C) and the photocatalytic activity was evaluated by the photocatalytic decomposition of methyl orange and phenol solutions under both UV-and visible-light irradiation, respectively. It was found that Ag(I) doping resulted in the formation of an isolated energy level of Ag 4d in the band gap of TiO
<sub>2</sub>
. On the basis of band-structure analysis of Ag/Ag(I)-TiO
<sub>2</sub>
photocatalyst, a possible photocatalytic mechanism was proposed to account for the different UV- and visible-light photocatalytic activities. Under visible-light irradiation, the isolated energy level of Ag 4d contributes to the visible-light absorption while the surface metallic Ag promotes the effective separation of the following photogenerated electrons and holes in the Ag/Ag(I)-TiO
<sub>2</sub>
nanoparticles, resulting in a higher visible-light photocatalytic activity than the one-component Ag-modified TiO
<sub>2</sub>
(such as Ag(I)-TiO
<sub>2</sub>
and Ag/TiO
<sub>2</sub>
). Under UV-light irradiation, the doping energy level of Ag(I) ions in the band gap of TiO
<sub>2</sub>
acts as the recombination center of photogenerated electrons and holes, leading to a lower photocatalytic performance of Ag-doped TiO
<sub>2</sub>
(such as Ag/Ag(I)-TiO
<sub>2</sub>
and Ag(I)-TiO
<sub>2</sub>
) than the corresponding undoped photocatalysts (such as Ag/TiO, and TiO
<sub>2</sub>
). Considering the well controllable preparation of various Ag-modified TiO
<sub>2</sub>
(such as TiO
<sub>2</sub>
, Ag/TiO
<sub>2</sub>
, Ag(I)-TiO
<sub>2</sub>
, and Ag/Ag(I)-TiO
<sub>2</sub>
), this work may provide some insight into the smart design of novel and high-efficiency photocatalytic materials.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1932-7447</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys. chem., C</s0>
</fA03>
<fA05>
<s2>116</s2>
</fA05>
<fA06>
<s2>33</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>UV- and Visible-Light Photocatalytic Activity of Simultaneously Deposited and Doped Ag/Ag(I)-TiO
<sub>2</sub>
Photocatalyst</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>RUI LIU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PING WANG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>XUEFEI WANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>HUOGEN YU</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JIAGUO YU</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemistry, School of Science, Wuhan University of Technology</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology</s1>
<s2>Wuhan 430070</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>17721-17728</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>549C</s2>
<s5>354000504080130500</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0397790</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physical chemistry. C</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Ag modification has been demonstrated to be an efficient strategy to improve the photocatalytic performance of TiO
<sub>2</sub>
photocatalysts. However, the previous studies about the Ag modification are only restricted to the surface loading of metallic Ag or Ag(I) doping, investigations have seldom been focused on the simultaneously deposited and doped Ag/ Ag(I)-TiO
<sub>2</sub>
photocatalyst. In this study, Ag/Ag(I)-TiO
<sub>2</sub>
photocatalyst was prepared by a facile impregnated method in combination with a calcination process (450 °C) and the photocatalytic activity was evaluated by the photocatalytic decomposition of methyl orange and phenol solutions under both UV-and visible-light irradiation, respectively. It was found that Ag(I) doping resulted in the formation of an isolated energy level of Ag 4d in the band gap of TiO
<sub>2</sub>
. On the basis of band-structure analysis of Ag/Ag(I)-TiO
<sub>2</sub>
photocatalyst, a possible photocatalytic mechanism was proposed to account for the different UV- and visible-light photocatalytic activities. Under visible-light irradiation, the isolated energy level of Ag 4d contributes to the visible-light absorption while the surface metallic Ag promotes the effective separation of the following photogenerated electrons and holes in the Ag/Ag(I)-TiO
<sub>2</sub>
nanoparticles, resulting in a higher visible-light photocatalytic activity than the one-component Ag-modified TiO
<sub>2</sub>
(such as Ag(I)-TiO
<sub>2</sub>
and Ag/TiO
<sub>2</sub>
). Under UV-light irradiation, the doping energy level of Ag(I) ions in the band gap of TiO
<sub>2</sub>
acts as the recombination center of photogenerated electrons and holes, leading to a lower photocatalytic performance of Ag-doped TiO
<sub>2</sub>
(such as Ag/Ag(I)-TiO
<sub>2</sub>
and Ag(I)-TiO
<sub>2</sub>
) than the corresponding undoped photocatalysts (such as Ag/TiO, and TiO
<sub>2</sub>
). Considering the well controllable preparation of various Ag-modified TiO
<sub>2</sub>
(such as TiO
<sub>2</sub>
, Ag/TiO
<sub>2</sub>
, Ag(I)-TiO
<sub>2</sub>
, and Ag/Ag(I)-TiO
<sub>2</sub>
), this work may provide some insight into the smart design of novel and high-efficiency photocatalytic materials.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001C01A03B</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Rayonnement UV</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Ultraviolet radiation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Radiación ultravioleta</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Rayonnement visible</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Visible radiation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Radiación visible</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Activité catalytique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Catalyst activity</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Actividad catalítica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Photocatalyse</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Photocatalysis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Fotocatálisis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Catalyseur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Catalyst</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Catalizador</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Addition argent</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Silver addition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Adición plata</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Calcination</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Calcining</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Calcinación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Orangé méthyle</s0>
<s2>NK</s2>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Methyl orange</s0>
<s2>NK</s2>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Phénol</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Phenol</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Fenol</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Phénols</s0>
<s2>FX</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Phenols</s0>
<s2>FX</s2>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Fenoles</s0>
<s2>FX</s2>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Irradiation UV</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Ultraviolet irradiation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Irradiación UV</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Addition indium</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Indium addition</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Adición indio</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Chaleur formation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Heat of formation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Calor formación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Niveau énergie</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Energy level</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Nivel energía</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Bande interdite</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Energy gap</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Banda prohibida</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Structure bande</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Band structure</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Estructura banda</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Structure électronique</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Electronic structure</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Estructura electrónica</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Eclairement</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Illumination</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Alumbrado</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Absorption lumière</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Light absorption</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Absorción luz</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Nanoparticule</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Nanoparticle</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Nanopartícula</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Addition arsenic</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Arsenic addition</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Adición arsénico</s0>
<s5>38</s5>
</fC03>
<fN21>
<s1>310</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001297 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001297 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0397790
   |texte=   UV- and Visible-Light Photocatalytic Activity of Simultaneously Deposited and Doped Ag/Ag(I)-TiO2 Photocatalyst
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024