Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cathodic multilayer transparent electrodes for ITO-free inverted organic solar cells

Identifieur interne : 001089 ( Main/Repository ); précédent : 001088; suivant : 001090

Cathodic multilayer transparent electrodes for ITO-free inverted organic solar cells

Auteurs : RBID : Pascal:13-0187836

Descripteurs français

English descriptors

Abstract

We demonstrate cathodic multilayer transparent electrodes based on a ZnS/Ag/TiOx (ZAT) structure for ITO-free inverted organic solar cells. A quality solution-based TiOx layer is adopted as an inner dielectric layer to modify the effective work function of Ag, ensuring the ZAT electrode works as a cathode. The effect of the TiOx layer is seen on the open-circuit voltage of a solar cell incorporating this layer, increasing to 900 mV from 600 mV in the case of a cell with a bare Ag layer for a bulk-heterojunction of poly[N-9"-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C70-butyric acid methyl ester (PCBM70). The results of a joint theoretical and experimental study indicate that the photocurrent of a ZAT-based solar cell can be significantly enhanced by carefully balancing the optical-spacer and cavity-resonance effects, both of which are modulated by the thickness of the WO3 layer used as a hole-collection layer at the top anode side. ZAT-based inverted solar cells with an optimized structure exhibit a power conversion efficiency as high as 5.1%, which is comparable to that of the ITO-based equivalent.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0187836

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Cathodic multilayer transparent electrodes for ITO-free inverted organic solar cells</title>
<author>
<name sortKey="Han, Donggeon" uniqKey="Han D">Donggeon Han</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, KAIST, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, Soohyun" uniqKey="Lee S">Soohyun Lee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, KAIST, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Hoyeon" uniqKey="Kim H">Hoyeon Kim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, KAIST, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jeong, Seonju" uniqKey="Jeong S">Seonju Jeong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of EEWS, KAIST, 291Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yoo, Seunghyup" uniqKey="Yoo S">Seunghyup Yoo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical Engineering, KAIST, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Yuseong-gu, Daejeon 305-701</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0187836</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0187836 INIST</idno>
<idno type="RBID">Pascal:13-0187836</idno>
<idno type="wicri:Area/Main/Corpus">000D63</idno>
<idno type="wicri:Area/Main/Repository">001089</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1566-1199</idno>
<title level="j" type="abbreviated">Org. electron. : (Print)</title>
<title level="j" type="main">Organic electronics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anode</term>
<term>Balancing</term>
<term>Butyric acid</term>
<term>Carbazole</term>
<term>Cathode</term>
<term>Cavity</term>
<term>Conversion rate</term>
<term>Doped materials</term>
<term>Energy conversion</term>
<term>Ester</term>
<term>Experimental study</term>
<term>Fullerenes</term>
<term>Heterojunction</term>
<term>Heterostructures</term>
<term>Indium oxide</term>
<term>Multiple layer</term>
<term>Open circuit voltage</term>
<term>Optimization</term>
<term>Organic solar cells</term>
<term>Photoconductivity</term>
<term>Photoelectric current</term>
<term>Solar cell</term>
<term>Spacer</term>
<term>Theoretical study</term>
<term>Thickness</term>
<term>Tin addition</term>
<term>Titanium oxide</term>
<term>Tungsten oxide</term>
<term>Work function</term>
<term>Zinc sulfide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Addition étain</term>
<term>Cellule solaire organique</term>
<term>Travail sortie</term>
<term>Cathode</term>
<term>Tension circuit ouvert</term>
<term>Cellule solaire</term>
<term>Hétérojonction</term>
<term>Etude théorique</term>
<term>Etude expérimentale</term>
<term>Courant photoélectrique</term>
<term>Photoconductivité</term>
<term>Equilibrage</term>
<term>Cale espacement</term>
<term>Cavité</term>
<term>Epaisseur</term>
<term>Optimisation</term>
<term>Conversion énergie</term>
<term>Taux conversion</term>
<term>Multicouche</term>
<term>Oxyde d'indium</term>
<term>Sulfure de zinc</term>
<term>Oxyde de titane</term>
<term>Hétérostructure</term>
<term>Carbazole</term>
<term>Fullerènes</term>
<term>Acide butyrique</term>
<term>Ester</term>
<term>Oxyde de tungstène</term>
<term>Anode</term>
<term>Matériau dopé</term>
<term>7330</term>
<term>8460J</term>
<term>8105T</term>
<term>ITO</term>
<term>ZnS</term>
<term>C70</term>
<term>WO3</term>
<term>TiO2</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We demonstrate cathodic multilayer transparent electrodes based on a ZnS/Ag/TiO
<sub>x</sub>
(ZAT) structure for ITO-free inverted organic solar cells. A quality solution-based TiO
<sub>x</sub>
layer is adopted as an inner dielectric layer to modify the effective work function of Ag, ensuring the ZAT electrode works as a cathode. The effect of the TiO
<sub>x</sub>
layer is seen on the open-circuit voltage of a solar cell incorporating this layer, increasing to 900 mV from 600 mV in the case of a cell with a bare Ag layer for a bulk-heterojunction of poly[N-9"-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C
<sub>70</sub>
-butyric acid methyl ester (PCBM70). The results of a joint theoretical and experimental study indicate that the photocurrent of a ZAT-based solar cell can be significantly enhanced by carefully balancing the optical-spacer and cavity-resonance effects, both of which are modulated by the thickness of the WO
<sub>3</sub>
layer used as a hole-collection layer at the top anode side. ZAT-based inverted solar cells with an optimized structure exhibit a power conversion efficiency as high as 5.1%, which is comparable to that of the ITO-based equivalent.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1566-1199</s0>
</fA01>
<fA03 i2="1">
<s0>Org. electron. : (Print)</s0>
</fA03>
<fA05>
<s2>14</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Cathodic multilayer transparent electrodes for ITO-free inverted organic solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HAN (Donggeon)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LEE (Soohyun)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KIM (Hoyeon)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JEONG (Seonju)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>YOO (Seunghyup)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical Engineering, KAIST, 291 Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Graduate School of EEWS, KAIST, 291Daehak-ro</s1>
<s2>Yuseong-gu, Daejeon 305-701</s2>
<s3>KOR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1477-1482</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27255</s2>
<s5>354000504152080070</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0187836</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Organic electronics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We demonstrate cathodic multilayer transparent electrodes based on a ZnS/Ag/TiO
<sub>x</sub>
(ZAT) structure for ITO-free inverted organic solar cells. A quality solution-based TiO
<sub>x</sub>
layer is adopted as an inner dielectric layer to modify the effective work function of Ag, ensuring the ZAT electrode works as a cathode. The effect of the TiO
<sub>x</sub>
layer is seen on the open-circuit voltage of a solar cell incorporating this layer, increasing to 900 mV from 600 mV in the case of a cell with a bare Ag layer for a bulk-heterojunction of poly[N-9"-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl C
<sub>70</sub>
-butyric acid methyl ester (PCBM70). The results of a joint theoretical and experimental study indicate that the photocurrent of a ZAT-based solar cell can be significantly enhanced by carefully balancing the optical-spacer and cavity-resonance effects, both of which are modulated by the thickness of the WO
<sub>3</sub>
layer used as a hole-collection layer at the top anode side. ZAT-based inverted solar cells with an optimized structure exhibit a power conversion efficiency as high as 5.1%, which is comparable to that of the ITO-based equivalent.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C30</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D03F02</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Travail sortie</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Work function</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Función de trabajo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cathode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Cathode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Cátodo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Hétérojonction</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Heterojunction</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Heterounión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Etude théorique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Theoretical study</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estudio teórico</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Etude expérimentale</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Experimental study</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Estudio experimental</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Courant photoélectrique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Photoelectric current</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Corriente fotoeléctrica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Photoconductivité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Photoconductivity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Fotoconductividad</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Equilibrage</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Balancing</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Equilibrado</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Cale espacement</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Spacer</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Calce espaciamiento</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Cavité</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Cavity</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Cavidad</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Epaisseur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Thickness</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Espesor</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Multicouche</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Multiple layer</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Capa múltiple</s0>
<s5>22</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>23</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Sulfure de zinc</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Zinc sulfide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Zinc sulfuro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>26</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Carbazole</s0>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Carbazole</s0>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Carbazol</s0>
<s5>27</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Fullerènes</s0>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Fullerenes</s0>
<s5>28</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Acide butyrique</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Butyric acid</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Butírico ácido</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Ester</s0>
<s5>30</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Ester</s0>
<s5>30</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Ester</s0>
<s5>30</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Oxyde de tungstène</s0>
<s5>31</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Tungsten oxide</s0>
<s5>31</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Wolframio óxido</s0>
<s5>31</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Anode</s0>
<s5>32</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Anode</s0>
<s5>32</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Anodo</s0>
<s5>32</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="30" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="31" i2="X" l="FRE">
<s0>7330</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="32" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="33" i2="X" l="FRE">
<s0>8105T</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="34" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="35" i2="X" l="FRE">
<s0>ZnS</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="36" i2="X" l="FRE">
<s0>C70</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="37" i2="X" l="FRE">
<s0>WO3</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="38" i2="X" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé II-VI</s0>
<s5>19</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>II-VI compound</s0>
<s5>19</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto II-VI</s0>
<s5>19</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>20</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Optoelectronic device</s0>
<s5>20</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Dispositivo optoelectrónico</s0>
<s5>20</s5>
</fC07>
<fN21>
<s1>168</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001089 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001089 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0187836
   |texte=   Cathodic multilayer transparent electrodes for ITO-free inverted organic solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024