Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chemical beam epitaxy growth and optimization of InAs/GaAs quantum dot multilayers

Identifieur interne : 001061 ( Main/Repository ); précédent : 001060; suivant : 001062

Chemical beam epitaxy growth and optimization of InAs/GaAs quantum dot multilayers

Auteurs : RBID : Pascal:14-0019855

Descripteurs français

English descriptors

Abstract

This paper reports on an in-situ growth process used to optimize InAs/GaAs quantum dot (QD) multilayer structures grown on (001) GaAs substrate by chemical beam epitaxy (CBE). Defects related to the incoherently relaxed InAs clusters are found to alter the QD nucleation mechanism on the subsequent layers, leading to reduced QD density and photoluminescence intensity. The formation of poor crystalline quality clusters is avoided by growing the GaAs spacer layers in a two-step process. The technique consists in covering the InAs QD layer with a 10 nm-thick GaAs layer grown at 465 °C, and then removing the excess indium contained in the uncapped portion of the clusters by increasing the temperature to 565 °C for 10 min before the deposition of the remaining GaAs spacer layer. Morphological investigation shows that the QD density and size distribution obtained in the first layer are preserved up to the tenth layer. The QD integrated photoluminescence intensity is found to increase linearly with the number of stacked layers. These results are very promising for chemical beam growth of high performance intermediate-band solar cells.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0019855

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Chemical beam epitaxy growth and optimization of InAs/GaAs quantum dot multilayers</title>
<author>
<name sortKey="Zribi, Jihene" uniqKey="Zribi J">Jihene Zribi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke</s1>
<s2>Sherbrooke, Québec J1K 2R1</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Sherbrooke, Québec J1K 2R1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ilahi, Bouraoui" uniqKey="Ilahi B">Bouraoui Ilahi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke</s1>
<s2>Sherbrooke, Québec J1K 2R1</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Sherbrooke, Québec J1K 2R1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morris, Denis" uniqKey="Morris D">Denis Morris</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke</s1>
<s2>Sherbrooke, Québec J1K 2R1</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Sherbrooke, Québec J1K 2R1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aimez, Vincent" uniqKey="Aimez V">Vincent Aimez</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke</s1>
<s2>Sherbrooke, Québec J1K 2R1</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Sherbrooke, Québec J1K 2R1</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ares, Richard" uniqKey="Ares R">Richard Ares</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke</s1>
<s2>Sherbrooke, Québec J1K 2R1</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Sherbrooke, Québec J1K 2R1</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0019855</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0019855 INIST</idno>
<idno type="RBID">Pascal:14-0019855</idno>
<idno type="wicri:Area/Main/Corpus">000312</idno>
<idno type="wicri:Area/Main/Repository">001061</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chemical beam epitaxy</term>
<term>Density distribution</term>
<term>Gallium arsenides</term>
<term>Growth mechanism</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium</term>
<term>Indium arsenides</term>
<term>Integrated intensity</term>
<term>Multilayer</term>
<term>Multilayers</term>
<term>Nanostructured materials</term>
<term>Nucleation</term>
<term>Optimization</term>
<term>Photoluminescence</term>
<term>Quantum dots</term>
<term>Solar cells</term>
<term>Spacer</term>
<term>Temperature dependence</term>
<term>Thick films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Epitaxie jet chimique</term>
<term>Mécanisme croissance</term>
<term>Optimisation</term>
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Arséniure de gallium</term>
<term>Point quantique</term>
<term>Nanomatériau</term>
<term>Multicouche</term>
<term>Couche multimoléculaire</term>
<term>Nucléation</term>
<term>Photoluminescence</term>
<term>Cale espacement</term>
<term>Couche épaisse</term>
<term>Indium</term>
<term>Dépendance température</term>
<term>Distribution densité</term>
<term>Intensité intégrée</term>
<term>Cellule solaire</term>
<term>Substrat GaAs</term>
<term>8110A</term>
<term>8107T</term>
<term>8107</term>
<term>6460Q</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper reports on an in-situ growth process used to optimize InAs/GaAs quantum dot (QD) multilayer structures grown on (001) GaAs substrate by chemical beam epitaxy (CBE). Defects related to the incoherently relaxed InAs clusters are found to alter the QD nucleation mechanism on the subsequent layers, leading to reduced QD density and photoluminescence intensity. The formation of poor crystalline quality clusters is avoided by growing the GaAs spacer layers in a two-step process. The technique consists in covering the InAs QD layer with a 10 nm-thick GaAs layer grown at 465 °C, and then removing the excess indium contained in the uncapped portion of the clusters by increasing the temperature to 565 °C for 10 min before the deposition of the remaining GaAs spacer layer. Morphological investigation shows that the QD density and size distribution obtained in the first layer are preserved up to the tenth layer. The QD integrated photoluminescence intensity is found to increase linearly with the number of stacked layers. These results are very promising for chemical beam growth of high performance intermediate-band solar cells.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>384</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Chemical beam epitaxy growth and optimization of InAs/GaAs quantum dot multilayers</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZRIBI (Jihene)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ILAHI (Bouraoui)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MORRIS (Denis)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>AIMEZ (Vincent)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ARES (Richard)</s1>
</fA11>
<fA14 i1="01">
<s1>Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke</s1>
<s2>Sherbrooke, Québec J1K 2R1</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>21-26</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000504266190050</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0019855</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper reports on an in-situ growth process used to optimize InAs/GaAs quantum dot (QD) multilayer structures grown on (001) GaAs substrate by chemical beam epitaxy (CBE). Defects related to the incoherently relaxed InAs clusters are found to alter the QD nucleation mechanism on the subsequent layers, leading to reduced QD density and photoluminescence intensity. The formation of poor crystalline quality clusters is avoided by growing the GaAs spacer layers in a two-step process. The technique consists in covering the InAs QD layer with a 10 nm-thick GaAs layer grown at 465 °C, and then removing the excess indium contained in the uncapped portion of the clusters by increasing the temperature to 565 °C for 10 min before the deposition of the remaining GaAs spacer layer. Morphological investigation shows that the QD density and size distribution obtained in the first layer are preserved up to the tenth layer. The QD integrated photoluminescence intensity is found to increase linearly with the number of stacked layers. These results are very promising for chemical beam growth of high performance intermediate-band solar cells.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A10A</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60D60Q</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Epitaxie jet chimique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Chemical beam epitaxy</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Optimisation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Optimization</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Multicouche</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Multilayers</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Couche multimoléculaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Multilayer</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Capa multimolecular</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Nucléation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Nucleation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Cale espacement</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Spacer</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Calce espaciamiento</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Couche épaisse</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Thick films</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Distribution densité</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Density distribution</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Distribución densidad</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Intensité intégrée</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Integrated intensity</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Intensidad integrada</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Substrat GaAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8110A</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>6460Q</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>020</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001061 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001061 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0019855
   |texte=   Chemical beam epitaxy growth and optimization of InAs/GaAs quantum dot multilayers
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024