Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrical and Photoelectrochemical-Properties of W03/Si Tandem Photoelectrodes

Identifieur interne : 000E02 ( Main/Repository ); précédent : 000E01; suivant : 000E03

Electrical and Photoelectrochemical-Properties of W03/Si Tandem Photoelectrodes

Auteurs : RBID : Pascal:13-0181418

Descripteurs français

English descriptors

Abstract

Tungsten trioxide (WO3) has been investigated as a photoanode for water oxidation reactions in acidic aqueous conditions. Though WO3 is not capable of performing unassisted solar-driven water splitting, WO3 can in principle be coupled with a low band gap semiconductor, such as Si, to produce a stand-alone, tandem photocathode/photoanode p-Si/n-WO3 system for solar fuels production. Junctions between Si and WO3, with and without intervening ohmic contacts, were therefore prepared and investigated in detail. Thin films of n-WO3 that were prepared directly on p-Si and n-Si substrates exhibited an onset of photocurrent at a potential consistent with expectations based on the band-edge alignment of these two materials predicted by Andersen theory. However, n-WO3 films deposited on Si substrates exhibited much lower anodic photocurrent densities (∼0.02 mA cm-2 at 1.0 V vs SCE) than identically prepared n-WO3 films that were deposited on fluorine-doped tin oxide (FTO) substrates (0.45 mA cm-2 at 1.0 V vs SCE). Deposition of n-WO3 onto a thin layer of tin-doped indium oxide (ITO) that had been deposited on a Si substrate yielded anodic photocurrent densities that were comparable to those observed for n-WO3 films that had been deposited onto FTO-coated glass. An increased photovoltage was observed when an n-Si/ITO Schottky junction was formed in series with the n-WO3 film, relative to when the WO3 was deposited directly onto the Si. Hence, inclusion of the ITO layer allowed for tandem photoelectrochemical devices to be prepared using n-WO3 and n-Si as the light absorbers.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0181418

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electrical and Photoelectrochemical
<sup>-</sup>
Properties of W0
<sub>3</sub>
/Si Tandem Photoelectrodes</title>
<author>
<name sortKey="Coridan, Robert H" uniqKey="Coridan R">Robert H. Coridan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Kavli Nanoscience Institute, Beckman Institute and Joint Center for Artificial Photosynthesis, Division of Chemistry and Chemical Engineering, 210 Noyes Laboratory, 127-72, California Institute of Technology</s1>
<s2>Pasadena, California 91125</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Pasadena, California 91125</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shaner, Matthew" uniqKey="Shaner M">Matthew Shaner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Kavli Nanoscience Institute, Beckman Institute and Joint Center for Artificial Photosynthesis, Division of Chemistry and Chemical Engineering, 210 Noyes Laboratory, 127-72, California Institute of Technology</s1>
<s2>Pasadena, California 91125</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Pasadena, California 91125</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wiggenhorn, Craig" uniqKey="Wiggenhorn C">Craig Wiggenhorn</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Kavli Nanoscience Institute, Beckman Institute and Joint Center for Artificial Photosynthesis, Division of Chemistry and Chemical Engineering, 210 Noyes Laboratory, 127-72, California Institute of Technology</s1>
<s2>Pasadena, California 91125</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Pasadena, California 91125</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brunschwig, Bruce S" uniqKey="Brunschwig B">Bruce S. Brunschwig</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Kavli Nanoscience Institute, Beckman Institute and Joint Center for Artificial Photosynthesis, Division of Chemistry and Chemical Engineering, 210 Noyes Laboratory, 127-72, California Institute of Technology</s1>
<s2>Pasadena, California 91125</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Pasadena, California 91125</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lewis, Nathan S" uniqKey="Lewis N">Nathan S. Lewis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Kavli Nanoscience Institute, Beckman Institute and Joint Center for Artificial Photosynthesis, Division of Chemistry and Chemical Engineering, 210 Noyes Laboratory, 127-72, California Institute of Technology</s1>
<s2>Pasadena, California 91125</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Pasadena, California 91125</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0181418</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0181418 INIST</idno>
<idno type="RBID">Pascal:13-0181418</idno>
<idno type="wicri:Area/Main/Corpus">000E04</idno>
<idno type="wicri:Area/Main/Repository">000E02</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1932-7447</idno>
<title level="j" type="abbreviated">J. phys. chem., C</title>
<title level="j" type="main">Journal of physical chemistry. C</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Doping</term>
<term>Manufacturing</term>
<term>Photoanodes</term>
<term>Photocathode</term>
<term>Photoconductivity</term>
<term>Photoelectrochemical cell</term>
<term>Semiconductor materials</term>
<term>Silicon</term>
<term>Tandem solar cell</term>
<term>Thin film</term>
<term>Tungsten oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photocathode</term>
<term>Photoconductivité</term>
<term>Dopage</term>
<term>Cellule solaire tandem</term>
<term>Cellule photoélectrochimique</term>
<term>Photoanode</term>
<term>Fabrication</term>
<term>Silicium</term>
<term>Oxyde de tungstène</term>
<term>Semiconducteur</term>
<term>Couche mince</term>
<term>Si</term>
<term>WO3</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tungsten trioxide (WO
<sub>3</sub>
) has been investigated as a photoanode for water oxidation reactions in acidic aqueous conditions. Though WO
<sub>3</sub>
is not capable of performing unassisted solar-driven water splitting, WO
<sub>3</sub>
can in principle be coupled with a low band gap semiconductor, such as Si, to produce a stand-alone, tandem photocathode/photoanode p-Si/n-WO
<sub>3</sub>
system for solar fuels production. Junctions between Si and WO
<sub>3</sub>
, with and without intervening ohmic contacts, were therefore prepared and investigated in detail. Thin films of n-WO
<sub>3</sub>
that were prepared directly on p-Si and n-Si substrates exhibited an onset of photocurrent at a potential consistent with expectations based on the band-edge alignment of these two materials predicted by Andersen theory. However, n-WO
<sub>3</sub>
films deposited on Si substrates exhibited much lower anodic photocurrent densities (∼0.02 mA cm
<sup>-2</sup>
at 1.0 V vs SCE) than identically prepared n-WO
<sub>3</sub>
films that were deposited on fluorine-doped tin oxide (FTO) substrates (0.45 mA cm
<sup>-2</sup>
at 1.0 V vs SCE). Deposition of n-WO
<sub>3</sub>
onto a thin layer of tin-doped indium oxide (ITO) that had been deposited on a Si substrate yielded anodic photocurrent densities that were comparable to those observed for n-WO
<sub>3</sub>
films that had been deposited onto FTO-coated glass. An increased photovoltage was observed when an n-Si/ITO Schottky junction was formed in series with the n-WO
<sub>3</sub>
film, relative to when the WO
<sub>3</sub>
was deposited directly onto the Si. Hence, inclusion of the ITO layer allowed for tandem photoelectrochemical devices to be prepared using n-WO
<sub>3</sub>
and n-Si as the light absorbers.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1932-7447</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys. chem., C</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA06>
<s2>14</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electrical and Photoelectrochemical
<sup>-</sup>
Properties of W0
<sub>3</sub>
/Si Tandem Photoelectrodes</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CORIDAN (Robert H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHANER (Matthew)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WIGGENHORN (Craig)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BRUNSCHWIG (Bruce S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LEWIS (Nathan S.)</s1>
</fA11>
<fA14 i1="01">
<s1>Kavli Nanoscience Institute, Beckman Institute and Joint Center for Artificial Photosynthesis, Division of Chemistry and Chemical Engineering, 210 Noyes Laboratory, 127-72, California Institute of Technology</s1>
<s2>Pasadena, California 91125</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>6949-6957</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>549C</s2>
<s5>354000173344190060</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0181418</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physical chemistry. C</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Tungsten trioxide (WO
<sub>3</sub>
) has been investigated as a photoanode for water oxidation reactions in acidic aqueous conditions. Though WO
<sub>3</sub>
is not capable of performing unassisted solar-driven water splitting, WO
<sub>3</sub>
can in principle be coupled with a low band gap semiconductor, such as Si, to produce a stand-alone, tandem photocathode/photoanode p-Si/n-WO
<sub>3</sub>
system for solar fuels production. Junctions between Si and WO
<sub>3</sub>
, with and without intervening ohmic contacts, were therefore prepared and investigated in detail. Thin films of n-WO
<sub>3</sub>
that were prepared directly on p-Si and n-Si substrates exhibited an onset of photocurrent at a potential consistent with expectations based on the band-edge alignment of these two materials predicted by Andersen theory. However, n-WO
<sub>3</sub>
films deposited on Si substrates exhibited much lower anodic photocurrent densities (∼0.02 mA cm
<sup>-2</sup>
at 1.0 V vs SCE) than identically prepared n-WO
<sub>3</sub>
films that were deposited on fluorine-doped tin oxide (FTO) substrates (0.45 mA cm
<sup>-2</sup>
at 1.0 V vs SCE). Deposition of n-WO
<sub>3</sub>
onto a thin layer of tin-doped indium oxide (ITO) that had been deposited on a Si substrate yielded anodic photocurrent densities that were comparable to those observed for n-WO
<sub>3</sub>
films that had been deposited onto FTO-coated glass. An increased photovoltage was observed when an n-Si/ITO Schottky junction was formed in series with the n-WO
<sub>3</sub>
film, relative to when the WO
<sub>3</sub>
was deposited directly onto the Si. Hence, inclusion of the ITO layer allowed for tandem photoelectrochemical devices to be prepared using n-WO
<sub>3</sub>
and n-Si as the light absorbers.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Photocathode</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Photocathode</s0>
<s5>05</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Fotocátodo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Photoconductivité</s0>
<s5>08</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Photoconductivity</s0>
<s5>08</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Fotoconductividad</s0>
<s5>08</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Doping</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Doping</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Cellule solaire tandem</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Tandem solar cell</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Célula solar tándem</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Cellule photoélectrochimique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Photoelectrochemical cell</s0>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Célula fotoelectroquímica</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Photoanode</s0>
<s5>13</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Photoanodes</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Fabrication</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Manufacturing</s0>
<s5>14</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Fabricación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Silicio</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Oxyde de tungstène</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Tungsten oxide</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Wolframio óxido</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Semiconducteur</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Semiconductor materials</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Semiconductor(material)</s0>
<s5>18</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>19</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>19</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Si</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>WO3</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fN21>
<s1>161</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E02 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000E02 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0181418
   |texte=   Electrical and Photoelectrochemical-Properties of W03/Si Tandem Photoelectrodes
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024