Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Hybrid solar cells based on colloidal nanocrystals and conjugated polymers

Identifieur interne : 000B74 ( Main/Repository ); précédent : 000B73; suivant : 000B75

Hybrid solar cells based on colloidal nanocrystals and conjugated polymers

Auteurs : RBID : Pascal:13-0332058

Descripteurs français

English descriptors

Abstract

In this study, monodispersed colloidal titanium dioxide (TiO2) was synthesized and applied with poly(3-octylthiophene-2,5-diyl) (P3OT), phenyl-C61-butyric acid methyl ester (PCBM), poly(3,4-ethylene dioxythiophene) (PEDOT), and poly(styrenesulfonate (PSS) to fabricate an aluminum/calcium/P3OT:PCBM: TiO2/PEDOT:PSS/indium tin oxide hybrid solar cell using spin coating and evaporation deposition. The effects of the TiO2 content and annealing temperature on cell performances were investigated. The results showed that optimization of the TiO2 content (15 wt.%) and annealing temperature (150 °C) effectively enhanced the performance of the hybrid solar cells. The PCBM and TiO2 absorbed more light photons in the P3OIT:PCBM: TiO2 active layer. The charge transfer in the P3OT:PCBM:TiO2 active layer was more efficient, increasing the amount of photoluminescence quenching. The increased active layer surface roughness reduced the charge-transport distance and enhanced the internal light scattering and light absorption. The best values for the open circuit voltage, short-circuit current density, fill factor, and efficiency for the prepared hybrid solar cell were 0.61 V, 9.50 mA/cm2, 34.46%, and 2.09%, respectively.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0332058

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Hybrid solar cells based on colloidal nanocrystals and conjugated polymers</title>
<author>
<name sortKey="Yu, Yang Yen" uniqKey="Yu Y">Yang-Yen Yu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist.</s1>
<s2>New Taipei City 24301</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>New Taipei City 24301</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Center for Thin Film Technologies and Applications, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist.</s1>
<s2>New Taipei City 24301</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>New Taipei City 24301</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist.</s1>
<s2>New Taipei City 24301</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>New Taipei City 24301</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ciou, Chi Yi" uniqKey="Ciou C">Chi-Yi Ciou</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist.</s1>
<s2>New Taipei City 24301</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Taïwan</country>
<wicri:noRegion>New Taipei City 24301</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0332058</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0332058 INIST</idno>
<idno type="RBID">Pascal:13-0332058</idno>
<idno type="wicri:Area/Main/Corpus">000623</idno>
<idno type="wicri:Area/Main/Repository">000B74</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Annealing temperature</term>
<term>Butyric derivative polymer</term>
<term>Charge transfer</term>
<term>Charge transport</term>
<term>Conjugated polymer</term>
<term>Current density</term>
<term>Ethylene</term>
<term>Evaporation</term>
<term>Indium oxide</term>
<term>Light scattering</term>
<term>Nanocrystal</term>
<term>Nanostructured materials</term>
<term>Optimization</term>
<term>Photoluminescence</term>
<term>Quenching</term>
<term>Roughness</term>
<term>Sol gel process</term>
<term>Solar cell</term>
<term>Spin-on coating</term>
<term>Temperature dependence</term>
<term>Thermal annealing</term>
<term>Thiophene derivative polymer</term>
<term>Thiophene polymer</term>
<term>Tin oxide</term>
<term>Titanium</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cellule solaire</term>
<term>Nanocristal</term>
<term>Nanomatériau</term>
<term>Polymère conjugué</term>
<term>Titane</term>
<term>Thiophène dérivé polymère</term>
<term>Butyrique dérivé polymère</term>
<term>Ethylène</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Dépôt centrifugation</term>
<term>Procédé sol gel</term>
<term>Evaporation</term>
<term>Température recuit</term>
<term>Recuit thermique</term>
<term>Dépendance température</term>
<term>Optimisation</term>
<term>Couche active</term>
<term>Transfert charge</term>
<term>Photoluminescence</term>
<term>Trempe</term>
<term>Rugosité</term>
<term>Transport charge</term>
<term>Diffusion lumière</term>
<term>Densité courant</term>
<term>Thiophène polymère</term>
<term>8460J</term>
<term>8107</term>
<term>8115L</term>
<term>7855</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Titane</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this study, monodispersed colloidal titanium dioxide (TiO
<sub>2</sub>
) was synthesized and applied with poly(3-octylthiophene-2,5-diyl) (P3OT), phenyl-C61-butyric acid methyl ester (PCBM), poly(3,4-ethylene dioxythiophene) (PEDOT), and poly(styrenesulfonate (PSS) to fabricate an aluminum/calcium/P3OT:PCBM: TiO
<sub>2</sub>
/PEDOT:PSS/indium tin oxide hybrid solar cell using spin coating and evaporation deposition. The effects of the TiO
<sub>2</sub>
content and annealing temperature on cell performances were investigated. The results showed that optimization of the TiO
<sub>2</sub>
content (15 wt.%) and annealing temperature (150 °C) effectively enhanced the performance of the hybrid solar cells. The PCBM and TiO
<sub>2</sub>
absorbed more light photons in the P3OIT:PCBM: TiO
<sub>2</sub>
active layer. The charge transfer in the P3OT:PCBM:TiO
<sub>2</sub>
active layer was more efficient, increasing the amount of photoluminescence quenching. The increased active layer surface roughness reduced the charge-transport distance and enhanced the internal light scattering and light absorption. The best values for the open circuit voltage, short-circuit current density, fill factor, and efficiency for the prepared hybrid solar cell were 0.61 V, 9.50 mA/cm
<sup>2</sup>
, 34.46%, and 2.09%, respectively.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>544</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Hybrid solar cells based on colloidal nanocrystals and conjugated polymers</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>The 6th International Conference on Technological Advances of Thin Films & Surface Coatings</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>YU (Yang-Yen)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CIOU (Chi-Yi)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ZHANG (Sam)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>GOH (Gregory K. L.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>CHEN (Zhong)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>QI (Guojun)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>WONG (Chee Cheong)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="06" i2="1">
<s1>LIU (Erjia)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Materials Engineering, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist.</s1>
<s2>New Taipei City 24301</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Center for Thin Film Technologies and Applications, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist.</s1>
<s2>New Taipei City 24301</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gunjuan Rd., Taishan Dist.</s1>
<s2>New Taipei City 24301</s2>
<s3>TWN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>318-323</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000501563070620</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0332058</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this study, monodispersed colloidal titanium dioxide (TiO
<sub>2</sub>
) was synthesized and applied with poly(3-octylthiophene-2,5-diyl) (P3OT), phenyl-C61-butyric acid methyl ester (PCBM), poly(3,4-ethylene dioxythiophene) (PEDOT), and poly(styrenesulfonate (PSS) to fabricate an aluminum/calcium/P3OT:PCBM: TiO
<sub>2</sub>
/PEDOT:PSS/indium tin oxide hybrid solar cell using spin coating and evaporation deposition. The effects of the TiO
<sub>2</sub>
content and annealing temperature on cell performances were investigated. The results showed that optimization of the TiO
<sub>2</sub>
content (15 wt.%) and annealing temperature (150 °C) effectively enhanced the performance of the hybrid solar cells. The PCBM and TiO
<sub>2</sub>
absorbed more light photons in the P3OIT:PCBM: TiO
<sub>2</sub>
active layer. The charge transfer in the P3OT:PCBM:TiO
<sub>2</sub>
active layer was more efficient, increasing the amount of photoluminescence quenching. The increased active layer surface roughness reduced the charge-transport distance and enhanced the internal light scattering and light absorption. The best values for the open circuit voltage, short-circuit current density, fill factor, and efficiency for the prepared hybrid solar cell were 0.61 V, 9.50 mA/cm
<sup>2</sup>
, 34.46%, and 2.09%, respectively.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A15L</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H55</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Polymère conjugué</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Conjugated polymer</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Polímero conjugado</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Titane</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Titanium</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Titanio</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Butyrique dérivé polymère</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Butyric derivative polymer</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Butírico derivado polímero</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Ethylène</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Ethylene</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Etileno</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Dépôt centrifugation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Spin-on coating</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Procédé sol gel</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Sol gel process</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Procedimiento sol gel</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Evaporation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Evaporation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Evaporación</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Température recuit</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Annealing temperature</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Temperatura recocido</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Recuit thermique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Thermal annealing</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Recocido térmico</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Transfert charge</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Charge transfer</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Transferencia carga</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Photoluminescence</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Photoluminescence</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Fotoluminiscencia</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Trempe</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Quenching</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Temple</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Rugosité</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Roughness</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Rugosidad</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Transport charge</s0>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Charge transport</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Diffusion lumière</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Light scattering</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Difusión luz</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Densité courant</s0>
<s5>39</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Current density</s0>
<s5>39</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Densidad corriente</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Thiophène polymère</s0>
<s2>NK</s2>
<s5>40</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Thiophene polymer</s0>
<s2>NK</s2>
<s5>40</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Tiofeno polímero</s0>
<s2>NK</s2>
<s5>40</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>8115L</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>7855</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>315</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>ThinFilms2012 International Conference on Technological Advances of Thin Films & Surface Coatings</s1>
<s2>6</s2>
<s3>Singapore SGP</s3>
<s4>2012-07-15</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000B74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0332058
   |texte=   Hybrid solar cells based on colloidal nanocrystals and conjugated polymers
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024