Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

InAs Nanowires Grown by Metal-Organic Vapor-Phase Epitaxy (MOVPE) Employing PS/PMMA Diblock Copolymer Nanopatterning

Identifieur interne : 000B05 ( Main/Repository ); précédent : 000B04; suivant : 000B06

InAs Nanowires Grown by Metal-Organic Vapor-Phase Epitaxy (MOVPE) Employing PS/PMMA Diblock Copolymer Nanopatterning

Auteurs : RBID : Pascal:14-0035685

Descripteurs français

English descriptors

Abstract

Dense arrays of indium arsenide (InAs) nanowire materials have been grown by selective-area metal-organic vapor-phase epitaxy (SA-MOVPE) using polystyrene-b-poly(methyl methacrylate) (PS/PMMA) diblock copolymer (DBC) nanopatterning technique, which is a catalyst-free approach. Nanoscale openings were defined in a thin (˜10 nm) SiNx, layer deposited on a (111)B-oriented GaAs substrate using the DBC process and CF4 reactive ion etching (RIE), which served as a hard mask for the nanowire growth. InAs nanowires with diameters down to ˜20 nm and micrometer-scale lengths were achieved with a density of ˜5 × 1010 cm2. The nanowire structures were characterized by scanning electron microscopy and transmission electron microscopy, which indicate twin defects in a primary zincblende crystal structure and the absence of threading dislocation within the imaged regions.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0035685

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">InAs Nanowires Grown by Metal-Organic Vapor-Phase Epitaxy (MOVPE) Employing PS/PMMA Diblock Copolymer Nanopatterning</title>
<author>
<name>YINGGANG HUANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive</s1>
<s2>Madison, Wisconsin 53706</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Madison, Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name>TAE WAN KIM</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive</s1>
<s2>Madison, Wisconsin 53706</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Madison, Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHISHENG XIONG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive</s1>
<s2>Madison, Wisconsin 53706</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Madison, Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mawst, Luke J" uniqKey="Mawst L">Luke J. Mawst</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive</s1>
<s2>Madison, Wisconsin 53706</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Madison, Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuech, Thomas F" uniqKey="Kuech T">Thomas F. Kuech</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive</s1>
<s2>Madison, Wisconsin 53706</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Madison, Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nealey, Paul F" uniqKey="Nealey P">Paul F. Nealey</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive</s1>
<s2>Madison, Wisconsin 53706</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Madison, Wisconsin 53706</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YUSHUAI DAI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>NanoPower Research Labs, Rochester Institute of Technology, 156 Lomb Memorial Drive</s1>
<s2>Rochester, New York 14623</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Rochester, New York 14623</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZIHAO WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>NanoPower Research Labs, Rochester Institute of Technology, 156 Lomb Memorial Drive</s1>
<s2>Rochester, New York 14623</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Rochester, New York 14623</wicri:noRegion>
</affiliation>
</author>
<author>
<name>WEI GUO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>NanoPower Research Labs, Rochester Institute of Technology, 156 Lomb Memorial Drive</s1>
<s2>Rochester, New York 14623</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Rochester, New York 14623</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Forbes, David" uniqKey="Forbes D">David Forbes</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>NanoPower Research Labs, Rochester Institute of Technology, 156 Lomb Memorial Drive</s1>
<s2>Rochester, New York 14623</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Rochester, New York 14623</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hubbard, Seth M" uniqKey="Hubbard S">Seth M. Hubbard</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>NanoPower Research Labs, Rochester Institute of Technology, 156 Lomb Memorial Drive</s1>
<s2>Rochester, New York 14623</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Rochester, New York 14623</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Nesnidal, Michael" uniqKey="Nesnidal M">Michael Nesnidal</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Firefly Technologies, 2082 Hackbeny Lane</s1>
<s2>Shakopee, Minnesota 55379</s2>
<s3>USA</s3>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Shakopee, Minnesota 55379</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0035685</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0035685 INIST</idno>
<idno type="RBID">Pascal:14-0035685</idno>
<idno type="wicri:Area/Main/Corpus">000210</idno>
<idno type="wicri:Area/Main/Repository">000B05</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1530-6984</idno>
<title level="j" type="abbreviated">Nano lett. : (Print)</title>
<title level="j" type="main">Nano letters : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arrays</term>
<term>Blende structure</term>
<term>Catalysts</term>
<term>Crystal defects</term>
<term>Crystal structure</term>
<term>Diblock copolymer</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>MOVPE method</term>
<term>Nanomaterial synthesis</term>
<term>Nanometer scale</term>
<term>Nanopatterning</term>
<term>Nanostructured materials</term>
<term>Nanostructures</term>
<term>Nanowires</term>
<term>PMMA</term>
<term>Plasma etching</term>
<term>Reactive ion etching</term>
<term>Scanning electron microscopy</term>
<term>Selective area</term>
<term>Threading dislocation</term>
<term>Transmission electron microscopy</term>
<term>VPE</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Synthèse nanomatériau</term>
<term>Méthode MOVPE</term>
<term>Epitaxie phase vapeur</term>
<term>Copolymère biséquencé</term>
<term>Formation nanomotif</term>
<term>Réseau(arrangement)</term>
<term>Nanofil</term>
<term>Nanomatériau</term>
<term>Aire sélective</term>
<term>Méthacrylate de méthyle polymère</term>
<term>Catalyseur</term>
<term>Nanostructure</term>
<term>Echelle nanométrique</term>
<term>Gravure ionique réactive</term>
<term>Gravure plasma</term>
<term>Microscopie électronique balayage</term>
<term>Microscopie électronique transmission</term>
<term>Défaut cristallin</term>
<term>Structure blende</term>
<term>Structure cristalline</term>
<term>Dislocation filetée</term>
<term>Substrat GaAs</term>
<term>8116</term>
<term>8116R</term>
<term>8107V</term>
<term>8107B</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dense arrays of indium arsenide (InAs) nanowire materials have been grown by selective-area metal-organic vapor-phase epitaxy (SA-MOVPE) using polystyrene-b-poly(methyl methacrylate) (PS/PMMA) diblock copolymer (DBC) nanopatterning technique, which is a catalyst-free approach. Nanoscale openings were defined in a thin (˜10 nm) SiN
<sub>x</sub>
, layer deposited on a (111)B-oriented GaAs substrate using the DBC process and CF
<sub>4</sub>
reactive ion etching (RIE), which served as a hard mask for the nanowire growth. InAs nanowires with diameters down to ˜20 nm and micrometer-scale lengths were achieved with a density of ˜5 × 10
<sup>10</sup>
cm
<sup>2</sup>
. The nanowire structures were characterized by scanning electron microscopy and transmission electron microscopy, which indicate twin defects in a primary zincblende crystal structure and the absence of threading dislocation within the imaged regions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1530-6984</s0>
</fA01>
<fA03 i2="1">
<s0>Nano lett. : (Print)</s0>
</fA03>
<fA05>
<s2>13</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>InAs Nanowires Grown by Metal-Organic Vapor-Phase Epitaxy (MOVPE) Employing PS/PMMA Diblock Copolymer Nanopatterning</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YINGGANG HUANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TAE WAN KIM</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SHISHENG XIONG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MAWST (Luke J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KUECH (Thomas F.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>NEALEY (Paul F.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>YUSHUAI DAI</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>ZIHAO WANG</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>WEI GUO</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>FORBES (David)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>HUBBARD (Seth M.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>NESNIDAL (Michael)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 1415 Engineering Drive</s1>
<s2>Madison, Wisconsin 53706</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive</s1>
<s2>Madison, Wisconsin 53706</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>NanoPower Research Labs, Rochester Institute of Technology, 156 Lomb Memorial Drive</s1>
<s2>Rochester, New York 14623</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Firefly Technologies, 2082 Hackbeny Lane</s1>
<s2>Shakopee, Minnesota 55379</s2>
<s3>USA</s3>
<sZ>12 aut.</sZ>
</fA14>
<fA20>
<s1>5979-5984</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>27369</s2>
<s5>354000500732540350</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>31 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0035685</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nano letters : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Dense arrays of indium arsenide (InAs) nanowire materials have been grown by selective-area metal-organic vapor-phase epitaxy (SA-MOVPE) using polystyrene-b-poly(methyl methacrylate) (PS/PMMA) diblock copolymer (DBC) nanopatterning technique, which is a catalyst-free approach. Nanoscale openings were defined in a thin (˜10 nm) SiN
<sub>x</sub>
, layer deposited on a (111)B-oriented GaAs substrate using the DBC process and CF
<sub>4</sub>
reactive ion etching (RIE), which served as a hard mask for the nanowire growth. InAs nanowires with diameters down to ˜20 nm and micrometer-scale lengths were achieved with a density of ˜5 × 10
<sup>10</sup>
cm
<sup>2</sup>
. The nanowire structures were characterized by scanning electron microscopy and transmission electron microscopy, which indicate twin defects in a primary zincblende crystal structure and the absence of threading dislocation within the imaged regions.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A16R</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A16H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>VPE</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Copolymère biséquencé</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Diblock copolymer</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Copolímero bisecuencia</s0>
<s2>NK</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Formation nanomotif</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Nanopatterning</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Formacíon nanomotivo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Réseau(arrangement)</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Arrays</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Aire sélective</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Selective area</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Méthacrylate de méthyle polymère</s0>
<s2>NK</s2>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>PMMA</s0>
<s2>NK</s2>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Catalyseur</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Catalysts</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Echelle nanométrique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Nanometer scale</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Gravure ionique réactive</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Reactive ion etching</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Grabado iónico reactivo</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Gravure plasma</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Plasma etching</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Grabado plasma</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Défaut cristallin</s0>
<s5>35</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Crystal defects</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Structure blende</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Blende structure</s0>
<s5>36</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Estructura blenda</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>37</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Dislocation filetée</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Threading dislocation</s0>
<s5>38</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Dislocación aterrajada</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Substrat GaAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8116</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8116R</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>041</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B05 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000B05 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0035685
   |texte=   InAs Nanowires Grown by Metal-Organic Vapor-Phase Epitaxy (MOVPE) Employing PS/PMMA Diblock Copolymer Nanopatterning
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024