Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanical niobium doping in barium titanate electroceramics

Identifieur interne : 000919 ( Main/Repository ); précédent : 000918; suivant : 000920

Mechanical niobium doping in barium titanate electroceramics

Auteurs : RBID : Pascal:13-0349050

Descripteurs français

English descriptors

Abstract

Niobium is a well-established donor dopant for semi-conducting BaTiO3 ceramics. The conventional procedure to dissolve Nb into BaTiO3 relies on thermal activation at high temperatures (up to 1500 °C) and even then, large dwell times are necessary due to the small diffusion coefficients of Nb5+. In this work, we demonstrate a new doping procedure by Mechanical Alloying (MA), which has already proven its potential for the fabrication of conductive electroceramics. In a planetary mill, powders of BaTiO3 and Nb2O5 were mixed for up to 540 min. The BaTiO3 unit cell volume increases with increasing Nb concentration. The electrical properties of conventional and mechanical alloyed samples as a function of Nb concentration are similar, however the mechanically alloyed samples shows a large conductivity that we attribute to a better homogeneity in the structure of MA-processed samples. For small dopant concentrations, charge compensation of the pentavalent Nb is primarily attributed to free electrons. At higher Nb concentrations cation vacancies prevail as compensation mechanism.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0349050

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Mechanical niobium doping in barium titanate electroceramics</title>
<author>
<name sortKey="Velasco Davalos, I A" uniqKey="Velasco Davalos I">I. A. Velasco-Davalos</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Departmento de Ingeniería Metalúrgica, Instituto Politécnico Nacional</s1>
<s2>Zacatenco, 07338 México D.F.</s2>
<s3>MEX</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Mexique</country>
<wicri:noRegion>Zacatenco, 07338 México D.F.</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>INRS-EMT, 1650 Boul. Lionel-Boulet</s1>
<s2>Varennes J3X 1S2</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Varennes J3X 1S2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ruediger, A" uniqKey="Ruediger A">A. Ruediger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>INRS-EMT, 1650 Boul. Lionel-Boulet</s1>
<s2>Varennes J3X 1S2</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Varennes J3X 1S2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cruz Rivera, J J" uniqKey="Cruz Rivera J">J. J. Cruz-Rivera</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550</s1>
<s2>Lomas, 78210 S.L.P.</s2>
<s3>MEX</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Mexique</country>
<wicri:noRegion>Lomas, 78210 S.L.P.</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gomez Yanez, C" uniqKey="Gomez Yanez C">C. Gomez-Yanez</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Departmento de Ingeniería Metalúrgica, Instituto Politécnico Nacional</s1>
<s2>Zacatenco, 07338 México D.F.</s2>
<s3>MEX</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Mexique</country>
<wicri:noRegion>Zacatenco, 07338 México D.F.</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0349050</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0349050 INIST</idno>
<idno type="RBID">Pascal:13-0349050</idno>
<idno type="wicri:Area/Main/Corpus">000551</idno>
<idno type="wicri:Area/Main/Repository">000919</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0925-8388</idno>
<title level="j" type="abbreviated">J. alloys compd.</title>
<title level="j" type="main">Journal of alloys and compounds</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activation energy</term>
<term>Charge compensation</term>
<term>Concentration effect</term>
<term>Diffusion coefficient</term>
<term>Donor center</term>
<term>Doping</term>
<term>Electrical conductivity</term>
<term>Electrical properties</term>
<term>Electroceramics</term>
<term>Ferroelectric materials</term>
<term>Free electron</term>
<term>High temperature</term>
<term>Impurity density</term>
<term>Indium addition</term>
<term>Mechanical alloying</term>
<term>Niobium</term>
<term>Planetary mill</term>
<term>Powder metallurgy</term>
<term>Semiconductor materials</term>
<term>Thermal activation</term>
<term>Titanates</term>
<term>Unit cell</term>
<term>Vacancy density</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Niobium</term>
<term>Addition indium</term>
<term>Titanate</term>
<term>Centre donneur</term>
<term>Dopage</term>
<term>Ferroélectrique</term>
<term>Energie activation</term>
<term>Activation thermique</term>
<term>Haute température</term>
<term>Coefficient diffusion</term>
<term>Alliage mécanique</term>
<term>Broyeur satellite</term>
<term>Métallurgie poudre</term>
<term>Maille cristalline</term>
<term>Céramique électronique</term>
<term>Semiconducteur</term>
<term>Effet concentration</term>
<term>Propriété électrique</term>
<term>Conductivité électrique</term>
<term>Concentration impureté</term>
<term>Compensation charge</term>
<term>Electron libre</term>
<term>Densité lacune</term>
<term>BaTiO3</term>
<term>Nb2O5</term>
<term>7784</term>
<term>8120E</term>
<term>8120</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Niobium is a well-established donor dopant for semi-conducting BaTiO
<sub>3</sub>
ceramics. The conventional procedure to dissolve Nb into BaTiO
<sub>3</sub>
relies on thermal activation at high temperatures (up to 1500 °C) and even then, large dwell times are necessary due to the small diffusion coefficients of Nb
<sup>5+</sup>
. In this work, we demonstrate a new doping procedure by Mechanical Alloying (MA), which has already proven its potential for the fabrication of conductive electroceramics. In a planetary mill, powders of BaTiO
<sub>3</sub>
and Nb
<sub>2</sub>
O
<sub>5</sub>
were mixed for up to 540 min. The BaTiO
<sub>3</sub>
unit cell volume increases with increasing Nb concentration. The electrical properties of conventional and mechanical alloyed samples as a function of Nb concentration are similar, however the mechanically alloyed samples shows a large conductivity that we attribute to a better homogeneity in the structure of MA-processed samples. For small dopant concentrations, charge compensation of the pentavalent Nb is primarily attributed to free electrons. At higher Nb concentrations cation vacancies prevail as compensation mechanism.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>581</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Mechanical niobium doping in barium titanate electroceramics</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VELASCO-DAVALOS (I. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RUEDIGER (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CRUZ-RIVERA (J. J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GOMEZ-YANEZ (C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Departmento de Ingeniería Metalúrgica, Instituto Politécnico Nacional</s1>
<s2>Zacatenco, 07338 México D.F.</s2>
<s3>MEX</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>INRS-EMT, 1650 Boul. Lionel-Boulet</s1>
<s2>Varennes J3X 1S2</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550</s1>
<s2>Lomas, 78210 S.L.P.</s2>
<s3>MEX</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>56-58</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000501580060110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0349050</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Niobium is a well-established donor dopant for semi-conducting BaTiO
<sub>3</sub>
ceramics. The conventional procedure to dissolve Nb into BaTiO
<sub>3</sub>
relies on thermal activation at high temperatures (up to 1500 °C) and even then, large dwell times are necessary due to the small diffusion coefficients of Nb
<sup>5+</sup>
. In this work, we demonstrate a new doping procedure by Mechanical Alloying (MA), which has already proven its potential for the fabrication of conductive electroceramics. In a planetary mill, powders of BaTiO
<sub>3</sub>
and Nb
<sub>2</sub>
O
<sub>5</sub>
were mixed for up to 540 min. The BaTiO
<sub>3</sub>
unit cell volume increases with increasing Nb concentration. The electrical properties of conventional and mechanical alloyed samples as a function of Nb concentration are similar, however the mechanically alloyed samples shows a large conductivity that we attribute to a better homogeneity in the structure of MA-processed samples. For small dopant concentrations, charge compensation of the pentavalent Nb is primarily attributed to free electrons. At higher Nb concentrations cation vacancies prevail as compensation mechanism.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D11C03A</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70G84</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A20</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>240</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Niobium</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Niobium</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="GER">
<s0>Niob</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Niobio</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Addition indium</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Indium addition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="GER">
<s0>Indiumzusatz</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Adición indio</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Titanate</s0>
<s2>NA</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Titanates</s0>
<s2>NA</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Titanato</s0>
<s2>NA</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Centre donneur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Donor center</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Centro dador</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="GER">
<s0>Dopen</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Ferroélectrique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Ferroelectric materials</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Material ferroeléctrico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Energie activation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Activation energy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="GER">
<s0>Aktivierungsenergie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Energía activación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Activation thermique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Thermal activation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="GER">
<s0>Thermische Aktivierung</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Termoactivación</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Haute température</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>High temperature</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="GER">
<s0>Hochtemperatur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Alta temperatura</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Coefficient diffusion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Diffusion coefficient</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="GER">
<s0>Diffusionskoeffizient</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Coeficiente difusión</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Alliage mécanique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Mechanical alloying</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="GER">
<s0>Mechanisches Legieren</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Aleación mecánico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Broyeur satellite</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Planetary mill</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Molino rodillos satelite</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Métallurgie poudre</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Powder metallurgy</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="GER">
<s0>Pulvermetallurgie</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Metalurgia polvo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Maille cristalline</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Unit cell</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Malla cristalina</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Céramique électronique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Electroceramics</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Cerámica electrónica</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Semiconducteur</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Semiconductor materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="GER">
<s0>Halbleiter</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Semiconductor(material)</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Effet concentration</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Concentration effect</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Efecto concentración</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Propriété électrique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Electrical properties</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="GER">
<s0>Elektrische Eigenschaft</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Propiedad eléctrica</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Conductivité électrique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Electrical conductivity</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="GER">
<s0>Elektrische Leitfaehigkeit</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Conductividad eléctrica</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Concentration impureté</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Impurity density</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Concentración impureza</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Compensation charge</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Charge compensation</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Compensación carga</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Electron libre</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Free electron</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="X" l="GER">
<s0>Freies Elektron</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Electrón libre</s0>
<s5>34</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Densité lacune</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Vacancy density</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Densidad vacuidad</s0>
<s5>35</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>BaTiO3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Nb2O5</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>7784</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>8120E</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>8120</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>329</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000919 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000919 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0349050
   |texte=   Mechanical niobium doping in barium titanate electroceramics
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024