Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photolithography-free fabrication of organic light-emitting diodes for lighting applications

Identifieur interne : 000727 ( Main/Repository ); précédent : 000726; suivant : 000728

Photolithography-free fabrication of organic light-emitting diodes for lighting applications

Auteurs : RBID : Pascal:13-0099572

Descripteurs français

English descriptors

Abstract

We investigate the photolithography-free fabrication of organic light-emitting diodes (OLEDs) for lighting applications with an attempt to embed the deposition and patterning process of an indium-tin-oxide (ITO) anode and insulating layer into an in-line-type organic evaporation system. This scheme inevitably brings in leakage current induced by the spike-like surface of ITO. To suppress it, we cover the ITO edges with three different insulation materials (i.e. sputter-deposited inorganic Al2O3 thin film, monomer (polymer) thin film deposited by organic acrylate evaporation or thermally evaporated organic insulation layer (tris-(8-hydroxyquinoline) aluminum (Alq3))). Although small-molecule organic insulation materials that can be thermally evaporated are the most suitable for such a cost-effective fabrication process, yet their insulation capability is low due to the carrier transporting property. In this paper, we demonstrate that it can be boosted to a great extent with an increase of their thickness. It is likely that pinholes existing on the Al2O3 thin film act as leak channels, degrading the device performance. We also verify that the insulation capability of polymer fabricated by organic acrylate evaporation is just comparable with that of polyimide (PI) insulator patterned using a standard photolithography process.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0099572

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photolithography-free fabrication of organic light-emitting diodes for lighting applications</title>
<author>
<name sortKey="Seo, I H" uniqKey="Seo I">I. H. Seo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Advanced Material Engineering, Chosun University</s1>
<s2>Gwangju 501-759</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Gwangju 501-759</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Park, J W" uniqKey="Park J">J. W. Park</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Electrical, Electronics & Communication Engineering, Korea University of Technology and Education</s1>
<s2>Cheonan 330-708</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Cheonan 330-708</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shin, D C" uniqKey="Shin D">D. C. Shin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Advanced Material Engineering, Chosun University</s1>
<s2>Gwangju 501-759</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Gwangju 501-759</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0099572</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0099572 INIST</idno>
<idno type="RBID">Pascal:13-0099572</idno>
<idno type="wicri:Area/Main/Corpus">001209</idno>
<idno type="wicri:Area/Main/Repository">000727</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Deposition process</term>
<term>Evaporation</term>
<term>Indium oxide</term>
<term>Leakage currents</term>
<term>Light emitting diodes</term>
<term>Monomers</term>
<term>Organic light emitting diodes</term>
<term>Organic molecule</term>
<term>Patterning</term>
<term>Photolithography</term>
<term>Physical vapor deposition</term>
<term>Pinholes</term>
<term>Polyimides</term>
<term>Polymer films</term>
<term>Polymers</term>
<term>Thickness</term>
<term>Thin films</term>
<term>Tin oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photolithographie</term>
<term>Diode électroluminescente organique</term>
<term>Diode électroluminescente</term>
<term>Procédé dépôt</term>
<term>Formation motif</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Evaporation</term>
<term>Courant fuite</term>
<term>Dépôt physique phase vapeur</term>
<term>Monomère</term>
<term>Film polymère</term>
<term>Molécule organique</term>
<term>Epaisseur</term>
<term>Couche mince</term>
<term>Polymère</term>
<term>Piqûre corrosion</term>
<term>Imide polymère</term>
<term>Al2O3</term>
<term>Substrat Al2O3</term>
<term>8115C</term>
<term>8540H</term>
<term>8560D</term>
<term>8560J</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Polymère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We investigate the photolithography-free fabrication of organic light-emitting diodes (OLEDs) for lighting applications with an attempt to embed the deposition and patterning process of an indium-tin-oxide (ITO) anode and insulating layer into an in-line-type organic evaporation system. This scheme inevitably brings in leakage current induced by the spike-like surface of ITO. To suppress it, we cover the ITO edges with three different insulation materials (i.e. sputter-deposited inorganic Al
<sub>2</sub>
O
<sub>3</sub>
thin film, monomer (polymer) thin film deposited by organic acrylate evaporation or thermally evaporated organic insulation layer (tris-(8-hydroxyquinoline) aluminum (Alq
<sub>3</sub>
))). Although small-molecule organic insulation materials that can be thermally evaporated are the most suitable for such a cost-effective fabrication process, yet their insulation capability is low due to the carrier transporting property. In this paper, we demonstrate that it can be boosted to a great extent with an increase of their thickness. It is likely that pinholes existing on the Al
<sub>2</sub>
O
<sub>3</sub>
thin film act as leak channels, degrading the device performance. We also verify that the insulation capability of polymer fabricated by organic acrylate evaporation is just comparable with that of polyimide (PI) insulator patterned using a standard photolithography process.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>28</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photolithography-free fabrication of organic light-emitting diodes for lighting applications</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SEO (I. H.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PARK (J. W.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SHIN (D. C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Advanced Material Engineering, Chosun University</s1>
<s2>Gwangju 501-759</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Electrical, Electronics & Communication Engineering, Korea University of Technology and Education</s1>
<s2>Cheonan 330-708</s2>
<s3>KOR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>025008.1-025008.5</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000182514710090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0099572</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We investigate the photolithography-free fabrication of organic light-emitting diodes (OLEDs) for lighting applications with an attempt to embed the deposition and patterning process of an indium-tin-oxide (ITO) anode and insulating layer into an in-line-type organic evaporation system. This scheme inevitably brings in leakage current induced by the spike-like surface of ITO. To suppress it, we cover the ITO edges with three different insulation materials (i.e. sputter-deposited inorganic Al
<sub>2</sub>
O
<sub>3</sub>
thin film, monomer (polymer) thin film deposited by organic acrylate evaporation or thermally evaporated organic insulation layer (tris-(8-hydroxyquinoline) aluminum (Alq
<sub>3</sub>
))). Although small-molecule organic insulation materials that can be thermally evaporated are the most suitable for such a cost-effective fabrication process, yet their insulation capability is low due to the carrier transporting property. In this paper, we demonstrate that it can be boosted to a great extent with an increase of their thickness. It is likely that pinholes existing on the Al
<sub>2</sub>
O
<sub>3</sub>
thin film act as leak channels, degrading the device performance. We also verify that the insulation capability of polymer fabricated by organic acrylate evaporation is just comparable with that of polyimide (PI) insulator patterned using a standard photolithography process.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15C</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F17</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Photolithographie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photolithography</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Diode électroluminescente organique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Organic light emitting diodes</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Light emitting diodes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Procédé dépôt</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Deposition process</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Procedimiento revestimiento</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Formation motif</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Patterning</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Evaporation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Evaporation</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Courant fuite</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Leakage currents</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Dépôt physique phase vapeur</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Physical vapor deposition</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Monomère</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Monomers</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Film polymère</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Polymer films</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Molécule organique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Organic molecule</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Molécula orgánica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Polymère</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Polymers</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Piqûre corrosion</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Pinholes</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Imide polymère</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Polyimides</s0>
<s2>NK</s2>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Al2O3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Substrat Al2O3</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8115C</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8540H</s0>
<s4>INC</s4>
<s5>66</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8560D</s0>
<s4>INC</s4>
<s5>67</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8560J</s0>
<s4>INC</s4>
<s5>68</s5>
</fC03>
<fN21>
<s1>070</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000727 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000727 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0099572
   |texte=   Photolithography-free fabrication of organic light-emitting diodes for lighting applications
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024