Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ultrafast photocarrier relaxation processes in Er-doped InAs quantum dots embedded in strain-relaxed InGaAs barriers

Identifieur interne : 000261 ( Main/Repository ); précédent : 000260; suivant : 000262

Ultrafast photocarrier relaxation processes in Er-doped InAs quantum dots embedded in strain-relaxed InGaAs barriers

Auteurs : RBID : Pascal:13-0288281

Descripteurs français

English descriptors

Abstract

Time-resolved transmission change of Er-doped InAs quantum dots (QDs) embedded in strain-relaxed In0.45Ga0.55As barriers has been studied using different excitation wavelengths (1.4-1.55 μm) to understand the QD-size dependence of the photocarrier relaxation. Each measured temporal profile was well reproduced by a sum of three exponential decays. Ultrafast (∼1.6 ps) and fast (∼6-9 ps) components are dominant in the initial stage of decay, and then the slow (∼70-130 ps) component due to the radiative recombination in the QDs appears to be seen. The first two components come from photocarrier relaxation into the nonradiative centers related to Er dopants or the lattice relaxation. The difference is considered to result from whether the nonradiative centers are positioned inside or outside the QDs. The decay time for the outside case becomes shorter as the excitation wavelength is shortened, which might be due to the weaker confinement of photocarriers in the smaller-size QDs. Suppression of the QDs contributing to the radiative recombination is also more significant for the smaller-size QD excitation.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0288281

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Ultrafast photocarrier relaxation processes in Er-doped InAs quantum dots embedded in strain-relaxed InGaAs barriers</title>
<author>
<name sortKey="Kitada, Takahiro" uniqKey="Kitada T">Takahiro Kitada</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Frontier Research of Engineering, Institute of Technology and Science, The University of Tokushima</s1>
<s2>Tokushima 770-8506</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tokushima 770-8506</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ueyama, Hyuga" uniqKey="Ueyama H">Hyuga Ueyama</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Frontier Research of Engineering, Institute of Technology and Science, The University of Tokushima</s1>
<s2>Tokushima 770-8506</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tokushima 770-8506</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Morita, Ken" uniqKey="Morita K">Ken Morita</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Frontier Research of Engineering, Institute of Technology and Science, The University of Tokushima</s1>
<s2>Tokushima 770-8506</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tokushima 770-8506</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Isu, Toshiro" uniqKey="Isu T">Toshiro Isu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for Frontier Research of Engineering, Institute of Technology and Science, The University of Tokushima</s1>
<s2>Tokushima 770-8506</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tokushima 770-8506</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0288281</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0288281 INIST</idno>
<idno type="RBID">Pascal:13-0288281</idno>
<idno type="wicri:Area/Main/Corpus">000824</idno>
<idno type="wicri:Area/Main/Repository">000261</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Confinement</term>
<term>Doping</term>
<term>Erbium</term>
<term>Gallium arsenides</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Lattice relaxation</term>
<term>Molecular beam epitaxy</term>
<term>Nanostructured materials</term>
<term>Nanostructures</term>
<term>Nonlinear optics</term>
<term>Quantum dots</term>
<term>Radiative recombination</term>
<term>Stress relaxation</term>
<term>Time resolution</term>
<term>Time resolved spectra</term>
<term>Ultrafast process</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Processus ultrarapide</term>
<term>Relaxation contrainte</term>
<term>Dopage</term>
<term>Arséniure d'indium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Point quantique</term>
<term>Nanomatériau</term>
<term>Spectre résolution temporelle</term>
<term>Résolution temporelle</term>
<term>Recombinaison radiative</term>
<term>Relaxation réseau</term>
<term>Confinement</term>
<term>Nanostructure</term>
<term>Erbium</term>
<term>Arséniure de gallium</term>
<term>Epitaxie jet moléculaire</term>
<term>Optique non linéaire</term>
<term>InAs</term>
<term>InGaAs</term>
<term>CaSe</term>
<term>8107T</term>
<term>8107</term>
<term>8115H</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Time-resolved transmission change of Er-doped InAs quantum dots (QDs) embedded in strain-relaxed In
<sub>0.45</sub>
Ga
<sub>0.55</sub>
As barriers has been studied using different excitation wavelengths (1.4-1.55 μm) to understand the QD-size dependence of the photocarrier relaxation. Each measured temporal profile was well reproduced by a sum of three exponential decays. Ultrafast (∼1.6 ps) and fast (∼6-9 ps) components are dominant in the initial stage of decay, and then the slow (∼70-130 ps) component due to the radiative recombination in the QDs appears to be seen. The first two components come from photocarrier relaxation into the nonradiative centers related to Er dopants or the lattice relaxation. The difference is considered to result from whether the nonradiative centers are positioned inside or outside the QDs. The decay time for the outside case becomes shorter as the excitation wavelength is shortened, which might be due to the weaker confinement of photocarriers in the smaller-size QDs. Suppression of the QDs contributing to the radiative recombination is also more significant for the smaller-size QD excitation.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>378</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Ultrafast photocarrier relaxation processes in Er-doped InAs quantum dots embedded in strain-relaxed InGaAs barriers</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>The 17th International Conference on Molecular Beam Epitaxy</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KITADA (Takahiro)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>UEYAMA (Hyuga)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MORITA (Ken)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ISU (Toshiro)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>AKIMOTO (Katzuhiro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SUEMASU (Takashi)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>OKUMURA (Hajime)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Center for Frontier Research of Engineering, Institute of Technology and Science, The University of Tokushima</s1>
<s2>Tokushima 770-8506</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>University of Tsukuba</s1>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>485-488</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000506550351190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0288281</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Time-resolved transmission change of Er-doped InAs quantum dots (QDs) embedded in strain-relaxed In
<sub>0.45</sub>
Ga
<sub>0.55</sub>
As barriers has been studied using different excitation wavelengths (1.4-1.55 μm) to understand the QD-size dependence of the photocarrier relaxation. Each measured temporal profile was well reproduced by a sum of three exponential decays. Ultrafast (∼1.6 ps) and fast (∼6-9 ps) components are dominant in the initial stage of decay, and then the slow (∼70-130 ps) component due to the radiative recombination in the QDs appears to be seen. The first two components come from photocarrier relaxation into the nonradiative centers related to Er dopants or the lattice relaxation. The difference is considered to result from whether the nonradiative centers are positioned inside or outside the QDs. The decay time for the outside case becomes shorter as the excitation wavelength is shortened, which might be due to the weaker confinement of photocarriers in the smaller-size QDs. Suppression of the QDs contributing to the radiative recombination is also more significant for the smaller-size QD excitation.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Processus ultrarapide</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Ultrafast process</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Proceso ultrarrápido</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Relaxation contrainte</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Stress relaxation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Doping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Doping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Spectre résolution temporelle</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Time resolved spectra</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Résolution temporelle</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Time resolution</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Recombinaison radiative</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Radiative recombination</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Recombinación radiativa</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Relaxation réseau</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Lattice relaxation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Confinement</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Confinement</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Erbium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Erbium</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Optique non linéaire</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Nonlinear optics</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>CaSe</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8115H</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>273</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>MBE2012 International Conference on Molecular Beam Epitaxy</s1>
<s2>17</s2>
<s3>Nara JPN</s3>
<s4>2012-09-23</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000261 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000261 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0288281
   |texte=   Ultrafast photocarrier relaxation processes in Er-doped InAs quantum dots embedded in strain-relaxed InGaAs barriers
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024