Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis

Identifieur interne : 000089 ( Main/Repository ); précédent : 000088; suivant : 000090

Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis

Auteurs : RBID : Pascal:14-0085044

Descripteurs français

English descriptors

Abstract

Here we develop a microdroplet sensor based on bipolar electrochemistry and electrochemiluminescence (ECL) imaging. The sensor was constructed with a closed bipolar cell on a hybrid poly(dimethylsioxane) (PDMS)-indium tin oxide (ITO) glass microchip. The ITO microband functions as the bipolar electrode and its two poles are placed in two spatially separate micro-reservoirs predrilled on the PDMS cover. After loading microliter-sized liquid droplets of tris(2,2'-bipyridyl) ruthenium (II)/2-(dibutylamino) ethanol (Ru(bpy)32+/DBAE) and the analyte to the micro-reservoirs, an appropriate external voltage imposed on the driving electrodes could induce the oxidation of Ru(bpy)32+/DBAE and simultaneous reduction of the analyte at the anodic and cathodic poles, respectively. ECL images generated by Ru(bpy)32+/DBAE oxidation at the anodic pole and the electrical current flowing through the bipolar electrode can be recorded for quantitative analyte detection. Several types of quinones were selected as model analytes to demonstrate the sensor performance. Furthermore, the cathodic pole of bipolar electrode can be modified with (3-aminopropyl)triethoxysilane-gold nanoparticles-horseradish peroxidase composites for hydrogen peroxide detection. This microdroplet sensor with a closed bipolar cell can avoid the interference and cross-contamination between analyte solutions and ECL reporting reagents. It is also well adapted for chemical analysis in the incompatible system, e.g., detection of organic compounds insoluble in water by aqueous ECL generation. Moreover, this microdroplet sensor has advantages of simple structure, high sensitivity, fast response and wide dynamic response, providing great promise for chemical and biological analysis.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0085044

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis</title>
<author>
<name>SUOZHU WU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for High-Performance and Novel Materials, Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University</s1>
<s2>Hangzhou 310058</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou 310058</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZHENYU ZHOU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for High-Performance and Novel Materials, Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University</s1>
<s2>Hangzhou 310058</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou 310058</wicri:noRegion>
</affiliation>
</author>
<author>
<name>LINRU XU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for High-Performance and Novel Materials, Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University</s1>
<s2>Hangzhou 310058</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou 310058</wicri:noRegion>
</affiliation>
</author>
<author>
<name>BIN SU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for High-Performance and Novel Materials, Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University</s1>
<s2>Hangzhou 310058</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou 310058</wicri:noRegion>
</affiliation>
</author>
<author>
<name>QUN FANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Center for High-Performance and Novel Materials, Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University</s1>
<s2>Hangzhou 310058</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Hangzhou 310058</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0085044</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0085044 INIST</idno>
<idno type="RBID">Pascal:14-0085044</idno>
<idno type="wicri:Area/Main/Corpus">000078</idno>
<idno type="wicri:Area/Main/Repository">000089</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0956-5663</idno>
<title level="j" type="abbreviated">Biosens. bioelectron.</title>
<title level="j" type="main">Biosensors & bioelectronics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chemical analysis</term>
<term>Electrochemiluminescence</term>
<term>Electrochemistry</term>
<term>Hydrogen peroxide</term>
<term>Imagery</term>
<term>Quinone</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Electrochimie</term>
<term>Electrochimiluminescence</term>
<term>Imagerie</term>
<term>Analyse chimique</term>
<term>Peroxyde d'hydrogène</term>
<term>Quinone</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Here we develop a microdroplet sensor based on bipolar electrochemistry and electrochemiluminescence (ECL) imaging. The sensor was constructed with a closed bipolar cell on a hybrid poly(dimethylsioxane) (PDMS)-indium tin oxide (ITO) glass microchip. The ITO microband functions as the bipolar electrode and its two poles are placed in two spatially separate micro-reservoirs predrilled on the PDMS cover. After loading microliter-sized liquid droplets of tris(2,2'-bipyridyl) ruthenium (II)/2-(dibutylamino) ethanol (Ru(bpy)
<sub>3</sub>
<sup>2+</sup>
/DBAE) and the analyte to the micro-reservoirs, an appropriate external voltage imposed on the driving electrodes could induce the oxidation of Ru(bpy)
<sub>3</sub>
<sup>2+</sup>
/DBAE and simultaneous reduction of the analyte at the anodic and cathodic poles, respectively. ECL images generated by Ru(bpy)
<sub>3</sub>
<sup>2+</sup>
/DBAE oxidation at the anodic pole and the electrical current flowing through the bipolar electrode can be recorded for quantitative analyte detection. Several types of quinones were selected as model analytes to demonstrate the sensor performance. Furthermore, the cathodic pole of bipolar electrode can be modified with (3-aminopropyl)triethoxysilane-gold nanoparticles-horseradish peroxidase composites for hydrogen peroxide detection. This microdroplet sensor with a closed bipolar cell can avoid the interference and cross-contamination between analyte solutions and ECL reporting reagents. It is also well adapted for chemical analysis in the incompatible system, e.g., detection of organic compounds insoluble in water by aqueous ECL generation. Moreover, this microdroplet sensor has advantages of simple structure, high sensitivity, fast response and wide dynamic response, providing great promise for chemical and biological analysis.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0956-5663</s0>
</fA01>
<fA03 i2="1">
<s0>Biosens. bioelectron.</s0>
</fA03>
<fA05>
<s2>53</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SUOZHU WU</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZHENYU ZHOU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LINRU XU</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BIN SU</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>QUN FANG</s1>
</fA11>
<fA14 i1="01">
<s1>Center for High-Performance and Novel Materials, Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University</s1>
<s2>Hangzhou 310058</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>148-153</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20668</s2>
<s5>354000506124400240</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0085044</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Biosensors & bioelectronics</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Here we develop a microdroplet sensor based on bipolar electrochemistry and electrochemiluminescence (ECL) imaging. The sensor was constructed with a closed bipolar cell on a hybrid poly(dimethylsioxane) (PDMS)-indium tin oxide (ITO) glass microchip. The ITO microband functions as the bipolar electrode and its two poles are placed in two spatially separate micro-reservoirs predrilled on the PDMS cover. After loading microliter-sized liquid droplets of tris(2,2'-bipyridyl) ruthenium (II)/2-(dibutylamino) ethanol (Ru(bpy)
<sub>3</sub>
<sup>2+</sup>
/DBAE) and the analyte to the micro-reservoirs, an appropriate external voltage imposed on the driving electrodes could induce the oxidation of Ru(bpy)
<sub>3</sub>
<sup>2+</sup>
/DBAE and simultaneous reduction of the analyte at the anodic and cathodic poles, respectively. ECL images generated by Ru(bpy)
<sub>3</sub>
<sup>2+</sup>
/DBAE oxidation at the anodic pole and the electrical current flowing through the bipolar electrode can be recorded for quantitative analyte detection. Several types of quinones were selected as model analytes to demonstrate the sensor performance. Furthermore, the cathodic pole of bipolar electrode can be modified with (3-aminopropyl)triethoxysilane-gold nanoparticles-horseradish peroxidase composites for hydrogen peroxide detection. This microdroplet sensor with a closed bipolar cell can avoid the interference and cross-contamination between analyte solutions and ECL reporting reagents. It is also well adapted for chemical analysis in the incompatible system, e.g., detection of organic compounds insoluble in water by aqueous ECL generation. Moreover, this microdroplet sensor has advantages of simple structure, high sensitivity, fast response and wide dynamic response, providing great promise for chemical and biological analysis.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002A31</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>215</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Electrochimie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electrochemistry</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Electroquímica</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Electrochimiluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Electrochemiluminescence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Electroquimiluminiscencia</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Imagerie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Imagery</s0>
<s5>10</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Imaginería</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Analyse chimique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Chemical analysis</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Análisis químico</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Peroxyde d'hydrogène</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Hydrogen peroxide</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Peróxido de hydrogeno</s0>
<s2>NK</s2>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Quinone</s0>
<s5>19</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Quinone</s0>
<s5>19</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Quinona</s0>
<s5>19</s5>
</fC03>
<fN21>
<s1>118</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000089 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000089 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0085044
   |texte=   Integrating bipolar electrochemistry and electrochemiluminescence imaging with microdroplets for chemical analysis
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024