Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Performance of gas source MBE-grown wavelength-extended InGaAs photodetectors with different buffer structures

Identifieur interne : 000D81 ( Chine/Analysis ); précédent : 000D80; suivant : 000D82

Performance of gas source MBE-grown wavelength-extended InGaAs photodetectors with different buffer structures

Auteurs : RBID : Pascal:09-0227877

Descripteurs français

English descriptors

Abstract

Wavelength-extended InyGa1-yAs photodiodes with cut-off wavelengths of 2.0, 2.4 and 2.7 μm at room temperature were grown using gas source molecular beam epitaxy with linearly graded InxAl1-xAs (x=0.52 to y) buffer layers and InyAl1-yAs cap layers. A convenient and reliable correlating ramping procedure was developed for the growth. Detector performances were compared with our standard homojunction detectors containing linearly graded InxGa1-xAs buffer layers. The heterojunction detectors showed better performance than the homojunction detectors. Also, the use of wider bandgap buffer and cap made the heterojunction detectors more suitable for both front and back illumination. For the photodiodes with 500 μm mesa diameter at room temperature, the typical dark current (VR=10 mV) and R0A were 74 nA and 104 Ω cm2 at 290K for the cut-off wavelength of 2.4 μm. Optimization of the buffer structure was necessary for further extension of the response wavelength.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0227877

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Performance of gas source MBE-grown wavelength-extended InGaAs photodetectors with different buffer structures</title>
<author>
<name sortKey="Zhang, Y G" uniqKey="Zhang Y">Y. G. Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Chang Ning Road</s1>
<s2>200050 Shanghai</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>200050 Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gu, Y" uniqKey="Gu Y">Y. Gu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Chang Ning Road</s1>
<s2>200050 Shanghai</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>200050 Shanghai</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of the Chinese Academy of Sciences</s1>
<s2>Beijing 100049</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tian, Z B" uniqKey="Tian Z">Z. B. Tian</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Chang Ning Road</s1>
<s2>200050 Shanghai</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>200050 Shanghai</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of the Chinese Academy of Sciences</s1>
<s2>Beijing 100049</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, K" uniqKey="Wang K">K. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Chang Ning Road</s1>
<s2>200050 Shanghai</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>200050 Shanghai</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Graduate School of the Chinese Academy of Sciences</s1>
<s2>Beijing 100049</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, A Z" uniqKey="Li A">A. Z. Li</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Chang Ning Road</s1>
<s2>200050 Shanghai</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>200050 Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhu, X R" uniqKey="Zhu X">X. R. Zhu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Chang Ning Road</s1>
<s2>200050 Shanghai</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>200050 Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zheng, Y L" uniqKey="Zheng Y">Y. L. Zheng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Chang Ning Road</s1>
<s2>200050 Shanghai</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>200050 Shanghai</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">09-0227877</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0227877 INIST</idno>
<idno type="RBID">Pascal:09-0227877</idno>
<idno type="wicri:Area/Main/Corpus">005674</idno>
<idno type="wicri:Area/Main/Repository">004E18</idno>
<idno type="wicri:Area/Chine/Extraction">000D81</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ambient temperature</term>
<term>Buffer layer</term>
<term>Dark current</term>
<term>Detectors</term>
<term>Energy gap</term>
<term>GSMBE method</term>
<term>Gallium arsenides</term>
<term>Growth mechanism</term>
<term>Heterojunctions</term>
<term>Homojunctions</term>
<term>III-V semiconductors</term>
<term>Illumination</term>
<term>Indium arsenides</term>
<term>Molecular beam epitaxy</term>
<term>Optimization</term>
<term>Photodetectors</term>
<term>Photodiodes</term>
<term>Temperature dependence</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Méthode GSMBE</term>
<term>Epitaxie jet moléculaire</term>
<term>Photodétecteur</term>
<term>Photodiode</term>
<term>Température ambiante</term>
<term>Couche tampon</term>
<term>Mécanisme croissance</term>
<term>Détecteur</term>
<term>Homojonction</term>
<term>Hétérojonction</term>
<term>Bande interdite</term>
<term>Eclairement</term>
<term>Dépendance température</term>
<term>Courant obscurité</term>
<term>Arséniure d'indium</term>
<term>Arséniure de gallium</term>
<term>Optimisation</term>
<term>Semiconducteur III-V</term>
<term>InGaAs</term>
<term>InxAl1-xAs</term>
<term>InxGa1-xAs</term>
<term>8115H</term>
<term>8560G</term>
<term>8560D</term>
<term>8110A</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wavelength-extended In
<sub>y</sub>
Ga
<sub>1-y</sub>
As photodiodes with cut-off wavelengths of 2.0, 2.4 and 2.7 μm at room temperature were grown using gas source molecular beam epitaxy with linearly graded In
<sub>x</sub>
Al
<sub>1-x</sub>
As (x=0.52 to y) buffer layers and In
<sub>y</sub>
Al
<sub>1-y</sub>
As cap layers. A convenient and reliable correlating ramping procedure was developed for the growth. Detector performances were compared with our standard homojunction detectors containing linearly graded In
<sub>x</sub>
Ga
<sub>1-x</sub>
As buffer layers. The heterojunction detectors showed better performance than the homojunction detectors. Also, the use of wider bandgap buffer and cap made the heterojunction detectors more suitable for both front and back illumination. For the photodiodes with 500 μm mesa diameter at room temperature, the typical dark current (V
<sub>R</sub>
=10 mV) and R
<sub>0</sub>
A were 74 nA and 104 Ω cm
<sup>2</sup>
at 290K for the cut-off wavelength of 2.4 μm. Optimization of the buffer structure was necessary for further extension of the response wavelength.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>311</s2>
</fA05>
<fA06>
<s2>7</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Performance of gas source MBE-grown wavelength-extended InGaAs photodetectors with different buffer structures</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>The 15th International Conference on Molecular Beam Epitaxy (MBE-XV)</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>ZHANG (Y. G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GU (Y.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>TIAN (Z. B.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WANG (K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LI (A. Z.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ZHU (X. R.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ZHENG (Y. L.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>WASILEWSKI (Z. R.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>BERESFORD (R.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Chang Ning Road</s1>
<s2>200050 Shanghai</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Graduate School of the Chinese Academy of Sciences</s1>
<s2>Beijing 100049</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>National Research Council</s1>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>Brown University</s1>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>1881-1884</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000184939900620</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>16 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0227877</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Wavelength-extended In
<sub>y</sub>
Ga
<sub>1-y</sub>
As photodiodes with cut-off wavelengths of 2.0, 2.4 and 2.7 μm at room temperature were grown using gas source molecular beam epitaxy with linearly graded In
<sub>x</sub>
Al
<sub>1-x</sub>
As (x=0.52 to y) buffer layers and In
<sub>y</sub>
Al
<sub>1-y</sub>
As cap layers. A convenient and reliable correlating ramping procedure was developed for the growth. Detector performances were compared with our standard homojunction detectors containing linearly graded In
<sub>x</sub>
Ga
<sub>1-x</sub>
As buffer layers. The heterojunction detectors showed better performance than the homojunction detectors. Also, the use of wider bandgap buffer and cap made the heterojunction detectors more suitable for both front and back illumination. For the photodiodes with 500 μm mesa diameter at room temperature, the typical dark current (V
<sub>R</sub>
=10 mV) and R
<sub>0</sub>
A were 74 nA and 104 Ω cm
<sup>2</sup>
at 290K for the cut-off wavelength of 2.4 μm. Optimization of the buffer structure was necessary for further extension of the response wavelength.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A10A</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Méthode GSMBE</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>GSMBE method</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Método GSMBE</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Photodétecteur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Photodetectors</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Photodiode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Photodiodes</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Température ambiante</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Ambient temperature</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Détecteur</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Detectors</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Homojonction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Homojunctions</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Hétérojonction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Heterojunctions</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Eclairement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Illumination</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Courant obscurité</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Dark current</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Corriente obscuridad</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Optimisation</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Optimization</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>InxAl1-xAs</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>InxGa1-xAs</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8115H</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8560G</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8560D</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8110A</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>166</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>International Conference on Molecular Beam Epitaxy</s1>
<s2>15</s2>
<s3>Vancouver CAN</s3>
<s4>2008-08-03</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D81 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000D81 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:09-0227877
   |texte=   Performance of gas source MBE-grown wavelength-extended InGaAs photodetectors with different buffer structures
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024