Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An interactive model of the human liver

Identifieur interne : 001359 ( PascalFrancis/Corpus ); précédent : 001358; suivant : 001360

An interactive model of the human liver

Auteurs : F. Boux De Casson ; D. D'Aulignac ; C. Laugier

Source :

RBID : Pascal:01-0421974

Descripteurs français

English descriptors

Abstract

In the aim of building a surgical simulator we have developed a model of the human liver. The model respects both the heterogeneous (different material properties depending on the tissue) and non-linear nature of the organ, using binary connectors. We validate that the local behavior of the connector is accurately reproduced on a global scale. Interaction, including collision detection and response, is possible in real-time using a haptic device. For smoother force feedback we introduce a local modeling technique that approximates forces at high frequency. Further we describe a fast method that allows real-time changes of the topology by avoiding subdivision. Finally we illustrate all these techniques by several experimental results.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0170-8643
A05       @2 271
A08 01  1  ENG  @1 An interactive model of the human liver
A09 01  1  ENG  @1 Experimental robotics VII : Waikiki HI, 11-13 December 2000
A11 01  1    @1 BOUX DE CASSON (F.)
A11 02  1    @1 D'AULIGNAC (D.)
A11 03  1    @1 LAUGIER (C.)
A12 01  1    @1 RUS (Daniela) @9 ed.
A12 02  1    @1 SANJIV SINGH @9 ed.
A14 01      @1 GRAVIR/INRIA Rhône Alpes @2 38330 Montbonnot Saint-Martin @3 FRA @Z 1 aut. @Z 2 aut. @Z 3 aut.
A20       @1 427-436
A21       @1 2001
A23 01      @0 ENG
A26 01      @0 3-540-42104-1
A43 01      @1 INIST @2 17803
A44       @0 A300
A45       @0 10 ref.
A47 01  1    @0 01-0421974
A60       @1 P @2 C
A61       @0 A
A64 01  1    @0 Lecture notes in control and information sciences
A66 01      @0 DEU
C01 01    ENG  @0 In the aim of building a surgical simulator we have developed a model of the human liver. The model respects both the heterogeneous (different material properties depending on the tissue) and non-linear nature of the organ, using binary connectors. We validate that the local behavior of the connector is accurately reproduced on a global scale. Interaction, including collision detection and response, is possible in real-time using a haptic device. For smoother force feedback we introduce a local modeling technique that approximates forces at high frequency. Further we describe a fast method that allows real-time changes of the topology by avoiding subdivision. Finally we illustrate all these techniques by several experimental results.
C02 01  X    @0 001D02D11
C02 02  X    @0 002B25N
C03 01  X  FRE  @0 Homme @5 03
C03 01  X  ENG  @0 Human @5 03
C03 01  X  SPA  @0 Hombre @5 03
C03 02  X  FRE  @0 Organe @5 04
C03 02  X  ENG  @0 Organ @5 04
C03 02  X  SPA  @0 Organo @5 04
C03 03  X  FRE  @0 Hétérogénéité @5 05
C03 03  X  ENG  @0 Heterogeneity @5 05
C03 03  X  SPA  @0 Heterogeneidad @5 05
C03 04  X  FRE  @0 Propriété matériau @5 06
C03 04  X  ENG  @0 Properties of materials @5 06
C03 04  X  SPA  @0 Propiedad material @5 06
C03 05  X  FRE  @0 Réponse temporelle @5 07
C03 05  X  ENG  @0 Time response @5 07
C03 05  X  SPA  @0 Respuesta temporal @5 07
C03 06  X  FRE  @0 Force @5 08
C03 06  X  ENG  @0 Force @5 08
C03 06  X  SPA  @0 Fuerza @5 08
C03 07  X  FRE  @0 Modélisation @5 16
C03 07  X  ENG  @0 Modeling @5 16
C03 07  X  SPA  @0 Modelización @5 16
C03 08  X  FRE  @0 Chirurgie @5 17
C03 08  X  ENG  @0 Surgery @5 17
C03 08  X  SPA  @0 Cirugía @5 17
C03 09  X  FRE  @0 Simulateur @5 18
C03 09  X  ENG  @0 Simulator @5 18
C03 09  X  SPA  @0 Simulador @5 18
C03 10  X  FRE  @0 Tissu @5 19
C03 10  X  ENG  @0 Tissue @5 19
C03 10  X  SPA  @0 Tejido @5 19
C03 11  X  FRE  @0 Effet non linéaire @5 20
C03 11  X  ENG  @0 Non linear effect @5 20
C03 11  X  SPA  @0 Efecto no lineal @5 20
C03 12  X  FRE  @0 Connexion électrique @5 22
C03 12  X  ENG  @0 Electrical connection @5 22
C03 12  X  SPA  @0 Conexión eléctrica @5 22
C03 13  X  FRE  @0 Interaction @5 23
C03 13  X  ENG  @0 Interaction @5 23
C03 13  X  SPA  @0 Interacción @5 23
C03 14  X  FRE  @0 Temps réponse @5 24
C03 14  X  ENG  @0 Response time @5 24
C03 14  X  SPA  @0 Tiempo respuesta @5 24
C03 15  X  FRE  @0 Temps réel @5 25
C03 15  X  ENG  @0 Real time @5 25
C03 15  X  SPA  @0 Tiempo real @5 25
C03 16  X  FRE  @0 Sensibilité tactile @5 26
C03 16  X  ENG  @0 Tactile sensitivity @5 26
C03 16  X  SPA  @0 Sensibilidad tactil @5 26
C03 17  X  FRE  @0 Rétroaction @5 27
C03 17  X  ENG  @0 Feedback regulation @5 27
C03 17  X  SPA  @0 Retroacción @5 27
C03 18  X  FRE  @0 Boucle réaction @5 28
C03 18  X  ENG  @0 Feedback @5 28
C03 18  X  SPA  @0 Retroalimentación @5 28
C03 19  X  FRE  @0 Haute fréquence @5 29
C03 19  X  ENG  @0 High frequency @5 29
C03 19  X  SPA  @0 Alta frecuencia @5 29
C03 20  X  FRE  @0 Topologie @5 30
C03 20  X  ENG  @0 Topology @5 30
C03 20  X  SPA  @0 Topología @5 30
N21       @1 295
pR  
A30 01  1  ENG  @1 ISER 2000 : international symposium on experimental robotics @2 7 @3 Waikiki HI USA @4 2000-12-11

Format Inist (serveur)

NO : PASCAL 01-0421974 CRAN
ET : An interactive model of the human liver
AU : BOUX DE CASSON (F.); D'AULIGNAC (D.); LAUGIER (C.); RUS (Daniela); SANJIV SINGH
AF : GRAVIR/INRIA Rhône Alpes/38330 Montbonnot Saint-Martin/France (1 aut., 2 aut., 3 aut.)
DT : Publication en série; Congrès; Niveau analytique
SO : Lecture notes in control and information sciences; ISSN 0170-8643; Allemagne; Da. 2001; Vol. 271; Pp. 427-436; Bibl. 10 ref.
LA : Anglais
EA : In the aim of building a surgical simulator we have developed a model of the human liver. The model respects both the heterogeneous (different material properties depending on the tissue) and non-linear nature of the organ, using binary connectors. We validate that the local behavior of the connector is accurately reproduced on a global scale. Interaction, including collision detection and response, is possible in real-time using a haptic device. For smoother force feedback we introduce a local modeling technique that approximates forces at high frequency. Further we describe a fast method that allows real-time changes of the topology by avoiding subdivision. Finally we illustrate all these techniques by several experimental results.
CC : 001D02D11; 002B25N
FD : Homme; Organe; Hétérogénéité; Propriété matériau; Réponse temporelle; Force; Modélisation; Chirurgie; Simulateur; Tissu; Effet non linéaire; Connexion électrique; Interaction; Temps réponse; Temps réel; Sensibilité tactile; Rétroaction; Boucle réaction; Haute fréquence; Topologie
ED : Human; Organ; Heterogeneity; Properties of materials; Time response; Force; Modeling; Surgery; Simulator; Tissue; Non linear effect; Electrical connection; Interaction; Response time; Real time; Tactile sensitivity; Feedback regulation; Feedback; High frequency; Topology
SD : Hombre; Organo; Heterogeneidad; Propiedad material; Respuesta temporal; Fuerza; Modelización; Cirugía; Simulador; Tejido; Efecto no lineal; Conexión eléctrica; Interacción; Tiempo respuesta; Tiempo real; Sensibilidad tactil; Retroacción; Retroalimentación; Alta frecuencia; Topología
LO : INIST-17803
ID : 01-0421974

Links to Exploration step

Pascal:01-0421974

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">An interactive model of the human liver</title>
<author>
<name sortKey="Boux De Casson, F" sort="Boux De Casson, F" uniqKey="Boux De Casson F" first="F." last="Boux De Casson">F. Boux De Casson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>GRAVIR/INRIA Rhône Alpes</s1>
<s2>38330 Montbonnot Saint-Martin</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="D Aulignac, D" sort="D Aulignac, D" uniqKey="D Aulignac D" first="D." last="D'Aulignac">D. D'Aulignac</name>
<affiliation>
<inist:fA14 i1="01">
<s1>GRAVIR/INRIA Rhône Alpes</s1>
<s2>38330 Montbonnot Saint-Martin</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Laugier, C" sort="Laugier, C" uniqKey="Laugier C" first="C." last="Laugier">C. Laugier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>GRAVIR/INRIA Rhône Alpes</s1>
<s2>38330 Montbonnot Saint-Martin</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">01-0421974</idno>
<date when="2001">2001</date>
<idno type="stanalyst">PASCAL 01-0421974 CRAN</idno>
<idno type="RBID">Pascal:01-0421974</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001359</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">An interactive model of the human liver</title>
<author>
<name sortKey="Boux De Casson, F" sort="Boux De Casson, F" uniqKey="Boux De Casson F" first="F." last="Boux De Casson">F. Boux De Casson</name>
<affiliation>
<inist:fA14 i1="01">
<s1>GRAVIR/INRIA Rhône Alpes</s1>
<s2>38330 Montbonnot Saint-Martin</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="D Aulignac, D" sort="D Aulignac, D" uniqKey="D Aulignac D" first="D." last="D'Aulignac">D. D'Aulignac</name>
<affiliation>
<inist:fA14 i1="01">
<s1>GRAVIR/INRIA Rhône Alpes</s1>
<s2>38330 Montbonnot Saint-Martin</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Laugier, C" sort="Laugier, C" uniqKey="Laugier C" first="C." last="Laugier">C. Laugier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>GRAVIR/INRIA Rhône Alpes</s1>
<s2>38330 Montbonnot Saint-Martin</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Lecture notes in control and information sciences</title>
<idno type="ISSN">0170-8643</idno>
<imprint>
<date when="2001">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Lecture notes in control and information sciences</title>
<idno type="ISSN">0170-8643</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electrical connection</term>
<term>Feedback</term>
<term>Feedback regulation</term>
<term>Force</term>
<term>Heterogeneity</term>
<term>High frequency</term>
<term>Human</term>
<term>Interaction</term>
<term>Modeling</term>
<term>Non linear effect</term>
<term>Organ</term>
<term>Properties of materials</term>
<term>Real time</term>
<term>Response time</term>
<term>Simulator</term>
<term>Surgery</term>
<term>Tactile sensitivity</term>
<term>Time response</term>
<term>Tissue</term>
<term>Topology</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Homme</term>
<term>Organe</term>
<term>Hétérogénéité</term>
<term>Propriété matériau</term>
<term>Réponse temporelle</term>
<term>Force</term>
<term>Modélisation</term>
<term>Chirurgie</term>
<term>Simulateur</term>
<term>Tissu</term>
<term>Effet non linéaire</term>
<term>Connexion électrique</term>
<term>Interaction</term>
<term>Temps réponse</term>
<term>Temps réel</term>
<term>Sensibilité tactile</term>
<term>Rétroaction</term>
<term>Boucle réaction</term>
<term>Haute fréquence</term>
<term>Topologie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the aim of building a surgical simulator we have developed a model of the human liver. The model respects both the heterogeneous (different material properties depending on the tissue) and non-linear nature of the organ, using binary connectors. We validate that the local behavior of the connector is accurately reproduced on a global scale. Interaction, including collision detection and response, is possible in real-time using a haptic device. For smoother force feedback we introduce a local modeling technique that approximates forces at high frequency. Further we describe a fast method that allows real-time changes of the topology by avoiding subdivision. Finally we illustrate all these techniques by several experimental results.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0170-8643</s0>
</fA01>
<fA05>
<s2>271</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>An interactive model of the human liver</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Experimental robotics VII : Waikiki HI, 11-13 December 2000</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>BOUX DE CASSON (F.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>D'AULIGNAC (D.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LAUGIER (C.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>RUS (Daniela)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SANJIV SINGH</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>GRAVIR/INRIA Rhône Alpes</s1>
<s2>38330 Montbonnot Saint-Martin</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>427-436</s1>
</fA20>
<fA21>
<s1>2001</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>3-540-42104-1</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>17803</s2>
</fA43>
<fA44>
<s0>A300</s0>
</fA44>
<fA45>
<s0>10 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>01-0421974</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Lecture notes in control and information sciences</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In the aim of building a surgical simulator we have developed a model of the human liver. The model respects both the heterogeneous (different material properties depending on the tissue) and non-linear nature of the organ, using binary connectors. We validate that the local behavior of the connector is accurately reproduced on a global scale. Interaction, including collision detection and response, is possible in real-time using a haptic device. For smoother force feedback we introduce a local modeling technique that approximates forces at high frequency. Further we describe a fast method that allows real-time changes of the topology by avoiding subdivision. Finally we illustrate all these techniques by several experimental results.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D02D11</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B25N</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Homme</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Human</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Organe</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Organ</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Organo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Hétérogénéité</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Heterogeneity</s0>
<s5>05</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Heterogeneidad</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Propriété matériau</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Properties of materials</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Propiedad material</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Réponse temporelle</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Time response</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Respuesta temporal</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Force</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Force</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Fuerza</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>16</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>16</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Chirurgie</s0>
<s5>17</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Surgery</s0>
<s5>17</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Cirugía</s0>
<s5>17</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Simulateur</s0>
<s5>18</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Simulator</s0>
<s5>18</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Simulador</s0>
<s5>18</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Tissu</s0>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Tissue</s0>
<s5>19</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Tejido</s0>
<s5>19</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Effet non linéaire</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Non linear effect</s0>
<s5>20</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Efecto no lineal</s0>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Connexion électrique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Electrical connection</s0>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Conexión eléctrica</s0>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Interaction</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Interaction</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Interacción</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Temps réponse</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Response time</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Tiempo respuesta</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Temps réel</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Real time</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Tiempo real</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Sensibilité tactile</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Tactile sensitivity</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Sensibilidad tactil</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Rétroaction</s0>
<s5>27</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Feedback regulation</s0>
<s5>27</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Retroacción</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Boucle réaction</s0>
<s5>28</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Feedback</s0>
<s5>28</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Retroalimentación</s0>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Haute fréquence</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>High frequency</s0>
<s5>29</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Alta frecuencia</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Topologie</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Topology</s0>
<s5>30</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Topología</s0>
<s5>30</s5>
</fC03>
<fN21>
<s1>295</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>ISER 2000 : international symposium on experimental robotics</s1>
<s2>7</s2>
<s3>Waikiki HI USA</s3>
<s4>2000-12-11</s4>
</fA30>
</pR>
</standard>
<server>
<NO>PASCAL 01-0421974 CRAN</NO>
<ET>An interactive model of the human liver</ET>
<AU>BOUX DE CASSON (F.); D'AULIGNAC (D.); LAUGIER (C.); RUS (Daniela); SANJIV SINGH</AU>
<AF>GRAVIR/INRIA Rhône Alpes/38330 Montbonnot Saint-Martin/France (1 aut., 2 aut., 3 aut.)</AF>
<DT>Publication en série; Congrès; Niveau analytique</DT>
<SO>Lecture notes in control and information sciences; ISSN 0170-8643; Allemagne; Da. 2001; Vol. 271; Pp. 427-436; Bibl. 10 ref.</SO>
<LA>Anglais</LA>
<EA>In the aim of building a surgical simulator we have developed a model of the human liver. The model respects both the heterogeneous (different material properties depending on the tissue) and non-linear nature of the organ, using binary connectors. We validate that the local behavior of the connector is accurately reproduced on a global scale. Interaction, including collision detection and response, is possible in real-time using a haptic device. For smoother force feedback we introduce a local modeling technique that approximates forces at high frequency. Further we describe a fast method that allows real-time changes of the topology by avoiding subdivision. Finally we illustrate all these techniques by several experimental results.</EA>
<CC>001D02D11; 002B25N</CC>
<FD>Homme; Organe; Hétérogénéité; Propriété matériau; Réponse temporelle; Force; Modélisation; Chirurgie; Simulateur; Tissu; Effet non linéaire; Connexion électrique; Interaction; Temps réponse; Temps réel; Sensibilité tactile; Rétroaction; Boucle réaction; Haute fréquence; Topologie</FD>
<ED>Human; Organ; Heterogeneity; Properties of materials; Time response; Force; Modeling; Surgery; Simulator; Tissue; Non linear effect; Electrical connection; Interaction; Response time; Real time; Tactile sensitivity; Feedback regulation; Feedback; High frequency; Topology</ED>
<SD>Hombre; Organo; Heterogeneidad; Propiedad material; Respuesta temporal; Fuerza; Modelización; Cirugía; Simulador; Tejido; Efecto no lineal; Conexión eléctrica; Interacción; Tiempo respuesta; Tiempo real; Sensibilidad tactil; Retroacción; Retroalimentación; Alta frecuencia; Topología</SD>
<LO>INIST-17803</LO>
<ID>01-0421974</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001359 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001359 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:01-0421974
   |texte=   An interactive model of the human liver
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024