Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechatronic design of haptic forceps for robotic surgery

Identifieur interne : 005E32 ( Main/Exploration ); précédent : 005E31; suivant : 005E33

Mechatronic design of haptic forceps for robotic surgery

Auteurs : P. Rizun [Canada] ; D. Gunn [Canada] ; B. Cox [Canada] ; G. Sutherland [Canada]

Source :

RBID : ISTEX:7A31E835E2F1C7877E0CB9C762672A3BF79E037E

English descriptors

Abstract

Background: Haptic feedback increases operator performance and comfort during telerobotic manipulation. Feedback of grasping pressure is critical in many microsurgical tasks, yet no haptic interface for surgical tools is commercially available. Methods: Literature on the psychophysics of touch was reviewed to define the spectrum of human touch perception and the fidelity requirements of an ideal haptic interface. Mechanical design and control literature was reviewed to translate the psychophysical requirements to engineering specification. High‐fidelity haptic forceps were then developed through an iterative process between engineering and surgery. Results: The forceps are a modular device that integrate with a haptic hand controller to add force feedback for tool actuation in telerobotic or virtual surgery. Their overall length is 153 mm and their mass is 125 g. A contact‐free voice coil actuator generates force feedback at frequencies up to 800 Hz. Maximum force output is 6 N (2N continuous) and the force resolution is 4 mN. The forceps employ a contact‐free magnetic position sensor as well as micro‐machined accelerometers to measure opening/closing acceleration. Position resolution is 0.6 µm with 1.3 µm RMS noise. The forceps can simulate stiffness greater than 20N/mm or impedances smaller than 15 g with no noticeable haptic artifacts or friction. Conclusion: As telerobotic surgery evolves, haptics will play an increasingly important role. Copyright © 2006 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/rcs.110


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechatronic design of haptic forceps for robotic surgery</title>
<author>
<name sortKey="Rizun, P" sort="Rizun, P" uniqKey="Rizun P" first="P." last="Rizun">P. Rizun</name>
</author>
<author>
<name sortKey="Gunn, D" sort="Gunn, D" uniqKey="Gunn D" first="D." last="Gunn">D. Gunn</name>
</author>
<author>
<name sortKey="Cox, B" sort="Cox, B" uniqKey="Cox B" first="B." last="Cox">B. Cox</name>
</author>
<author>
<name sortKey="Sutherland, G" sort="Sutherland, G" uniqKey="Sutherland G" first="G." last="Sutherland">G. Sutherland</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:7A31E835E2F1C7877E0CB9C762672A3BF79E037E</idno>
<date when="2006" year="2006">2006</date>
<idno type="doi">10.1002/rcs.110</idno>
<idno type="url">https://api.istex.fr/document/7A31E835E2F1C7877E0CB9C762672A3BF79E037E/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000E62</idno>
<idno type="wicri:Area/Istex/Curation">000E62</idno>
<idno type="wicri:Area/Istex/Checkpoint">001D25</idno>
<idno type="wicri:doubleKey">1478-5951:2006:Rizun P:mechatronic:design:of</idno>
<idno type="wicri:source">PubMed</idno>
<idno type="RBID">pubmed:17520653</idno>
<idno type="wicri:Area/PubMed/Corpus">001629</idno>
<idno type="wicri:Area/PubMed/Curation">001629</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001569</idno>
<idno type="wicri:Area/Ncbi/Merge">000B66</idno>
<idno type="wicri:Area/Ncbi/Curation">000B66</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000B66</idno>
<idno type="wicri:Area/Main/Merge">006073</idno>
<idno type="wicri:Area/Main/Curation">005E32</idno>
<idno type="wicri:Area/Main/Exploration">005E32</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Mechatronic design of haptic forceps for robotic surgery</title>
<author>
<name sortKey="Rizun, P" sort="Rizun, P" uniqKey="Rizun P" first="P." last="Rizun">P. Rizun</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>University of Calgary, Calgary, Alberta</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gunn, D" sort="Gunn, D" uniqKey="Gunn D" first="D." last="Gunn">D. Gunn</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>University of Calgary, Calgary, Alberta</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cox, B" sort="Cox, B" uniqKey="Cox B" first="B." last="Cox">B. Cox</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>University of Calgary, Calgary, Alberta</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sutherland, G" sort="Sutherland, G" uniqKey="Sutherland G" first="G." last="Sutherland">G. Sutherland</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>University of Calgary, Calgary, Alberta</wicri:regionArea>
<orgName type="university">Université de Calgary</orgName>
<placeName>
<settlement type="city">Calgary</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">The International Journal of Medical Robotics and Computer Assisted Surgery</title>
<title level="j" type="abbrev">Int. J. Med. Robotics Comput. Assist. Surg.</title>
<idno type="ISSN">1478-5951</idno>
<idno type="eISSN">1478-596X</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd.</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2006-12">2006-12</date>
<biblScope unit="volume">2</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="341">341</biblScope>
<biblScope unit="page" to="349">349</biblScope>
</imprint>
<idno type="ISSN">1478-5951</idno>
</series>
<idno type="istex">7A31E835E2F1C7877E0CB9C762672A3BF79E037E</idno>
<idno type="DOI">10.1002/rcs.110</idno>
<idno type="ArticleID">RCS110</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1478-5951</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer-Aided Design</term>
<term>Electronics</term>
<term>Equipment Design (methods)</term>
<term>Equipment Failure Analysis</term>
<term>Mechanics</term>
<term>Reproducibility of Results</term>
<term>Robotics (instrumentation)</term>
<term>Robotics (methods)</term>
<term>Sensitivity and Specificity</term>
<term>Stress, Mechanical</term>
<term>Surgery, Computer-Assisted (instrumentation)</term>
<term>Surgery, Computer-Assisted (methods)</term>
<term>Surgical Instruments</term>
<term>Telemedicine (instrumentation)</term>
<term>Telemedicine (methods)</term>
<term>Touch</term>
<term>Transducers</term>
<term>User-Computer Interface</term>
<term>device design</term>
<term>forceps</term>
<term>haptics</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Robotics</term>
<term>Surgery, Computer-Assisted</term>
<term>Telemedicine</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Equipment Design</term>
<term>Robotics</term>
<term>Surgery, Computer-Assisted</term>
<term>Telemedicine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer-Aided Design</term>
<term>Electronics</term>
<term>Equipment Failure Analysis</term>
<term>Mechanics</term>
<term>Reproducibility of Results</term>
<term>Sensitivity and Specificity</term>
<term>Stress, Mechanical</term>
<term>Surgical Instruments</term>
<term>Touch</term>
<term>Transducers</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Background: Haptic feedback increases operator performance and comfort during telerobotic manipulation. Feedback of grasping pressure is critical in many microsurgical tasks, yet no haptic interface for surgical tools is commercially available. Methods: Literature on the psychophysics of touch was reviewed to define the spectrum of human touch perception and the fidelity requirements of an ideal haptic interface. Mechanical design and control literature was reviewed to translate the psychophysical requirements to engineering specification. High‐fidelity haptic forceps were then developed through an iterative process between engineering and surgery. Results: The forceps are a modular device that integrate with a haptic hand controller to add force feedback for tool actuation in telerobotic or virtual surgery. Their overall length is 153 mm and their mass is 125 g. A contact‐free voice coil actuator generates force feedback at frequencies up to 800 Hz. Maximum force output is 6 N (2N continuous) and the force resolution is 4 mN. The forceps employ a contact‐free magnetic position sensor as well as micro‐machined accelerometers to measure opening/closing acceleration. Position resolution is 0.6 µm with 1.3 µm RMS noise. The forceps can simulate stiffness greater than 20N/mm or impedances smaller than 15 g with no noticeable haptic artifacts or friction. Conclusion: As telerobotic surgery evolves, haptics will play an increasingly important role. Copyright © 2006 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Alberta</li>
</region>
<settlement>
<li>Calgary</li>
</settlement>
<orgName>
<li>Université de Calgary</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Alberta">
<name sortKey="Rizun, P" sort="Rizun, P" uniqKey="Rizun P" first="P." last="Rizun">P. Rizun</name>
</region>
<name sortKey="Cox, B" sort="Cox, B" uniqKey="Cox B" first="B." last="Cox">B. Cox</name>
<name sortKey="Gunn, D" sort="Gunn, D" uniqKey="Gunn D" first="D." last="Gunn">D. Gunn</name>
<name sortKey="Sutherland, G" sort="Sutherland, G" uniqKey="Sutherland G" first="G." last="Sutherland">G. Sutherland</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005E32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005E32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:7A31E835E2F1C7877E0CB9C762672A3BF79E037E
   |texte=   Mechatronic design of haptic forceps for robotic surgery
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024