Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechatronic design of haptic forceps for robotic surgery.

Identifieur interne : 001629 ( PubMed/Corpus ); précédent : 001628; suivant : 001630

Mechatronic design of haptic forceps for robotic surgery.

Auteurs : P. Rizun ; D. Gunn ; B. Cox ; G. Sutherland

Source :

RBID : pubmed:17520653

English descriptors

Abstract

Haptic feedback increases operator performance and comfort during telerobotic manipulation. Feedback of grasping pressure is critical in many microsurgical tasks, yet no haptic interface for surgical tools is commercially available.

DOI: 10.1002/rcs.110
PubMed: 17520653

Links to Exploration step

pubmed:17520653

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechatronic design of haptic forceps for robotic surgery.</title>
<author>
<name sortKey="Rizun, P" sort="Rizun, P" uniqKey="Rizun P" first="P" last="Rizun">P. Rizun</name>
<affiliation>
<nlm:affiliation>University of Calgary, Calgary, Alberta, Canada. prizun@ucalgary.ca</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gunn, D" sort="Gunn, D" uniqKey="Gunn D" first="D" last="Gunn">D. Gunn</name>
</author>
<author>
<name sortKey="Cox, B" sort="Cox, B" uniqKey="Cox B" first="B" last="Cox">B. Cox</name>
</author>
<author>
<name sortKey="Sutherland, G" sort="Sutherland, G" uniqKey="Sutherland G" first="G" last="Sutherland">G. Sutherland</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="doi">10.1002/rcs.110</idno>
<idno type="RBID">pubmed:17520653</idno>
<idno type="pmid">17520653</idno>
<idno type="wicri:Area/PubMed/Corpus">001629</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechatronic design of haptic forceps for robotic surgery.</title>
<author>
<name sortKey="Rizun, P" sort="Rizun, P" uniqKey="Rizun P" first="P" last="Rizun">P. Rizun</name>
<affiliation>
<nlm:affiliation>University of Calgary, Calgary, Alberta, Canada. prizun@ucalgary.ca</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Gunn, D" sort="Gunn, D" uniqKey="Gunn D" first="D" last="Gunn">D. Gunn</name>
</author>
<author>
<name sortKey="Cox, B" sort="Cox, B" uniqKey="Cox B" first="B" last="Cox">B. Cox</name>
</author>
<author>
<name sortKey="Sutherland, G" sort="Sutherland, G" uniqKey="Sutherland G" first="G" last="Sutherland">G. Sutherland</name>
</author>
</analytic>
<series>
<title level="j">The international journal of medical robotics + computer assisted surgery : MRCAS</title>
<idno type="eISSN">1478-596X</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer-Aided Design</term>
<term>Electronics</term>
<term>Equipment Design (methods)</term>
<term>Equipment Failure Analysis</term>
<term>Mechanics</term>
<term>Reproducibility of Results</term>
<term>Robotics (instrumentation)</term>
<term>Robotics (methods)</term>
<term>Sensitivity and Specificity</term>
<term>Stress, Mechanical</term>
<term>Surgery, Computer-Assisted (instrumentation)</term>
<term>Surgery, Computer-Assisted (methods)</term>
<term>Surgical Instruments</term>
<term>Telemedicine (instrumentation)</term>
<term>Telemedicine (methods)</term>
<term>Touch</term>
<term>Transducers</term>
<term>User-Computer Interface</term>
</keywords>
<keywords scheme="MESH" qualifier="instrumentation" xml:lang="en">
<term>Robotics</term>
<term>Surgery, Computer-Assisted</term>
<term>Telemedicine</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Equipment Design</term>
<term>Robotics</term>
<term>Surgery, Computer-Assisted</term>
<term>Telemedicine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer-Aided Design</term>
<term>Electronics</term>
<term>Equipment Failure Analysis</term>
<term>Mechanics</term>
<term>Reproducibility of Results</term>
<term>Sensitivity and Specificity</term>
<term>Stress, Mechanical</term>
<term>Surgical Instruments</term>
<term>Touch</term>
<term>Transducers</term>
<term>User-Computer Interface</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Haptic feedback increases operator performance and comfort during telerobotic manipulation. Feedback of grasping pressure is critical in many microsurgical tasks, yet no haptic interface for surgical tools is commercially available.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">17520653</PMID>
<DateCreated>
<Year>2007</Year>
<Month>05</Month>
<Day>23</Day>
</DateCreated>
<DateCompleted>
<Year>2007</Year>
<Month>06</Month>
<Day>19</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1478-596X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2006</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>The international journal of medical robotics + computer assisted surgery : MRCAS</Title>
<ISOAbbreviation>Int J Med Robot</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechatronic design of haptic forceps for robotic surgery.</ArticleTitle>
<Pagination>
<MedlinePgn>341-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Haptic feedback increases operator performance and comfort during telerobotic manipulation. Feedback of grasping pressure is critical in many microsurgical tasks, yet no haptic interface for surgical tools is commercially available.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">Literature on the psychophysics of touch was reviewed to define the spectrum of human touch perception and the fidelity requirements of an ideal haptic interface. Mechanical design and control literature was reviewed to translate the psychophysical requirements to engineering specification. High-fidelity haptic forceps were then developed through an iterative process between engineering and surgery.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">The forceps are a modular device that integrate with a haptic hand controller to add force feedback for tool actuation in telerobotic or virtual surgery. Their overall length is 153 mm and their mass is 125 g. A contact-free voice coil actuator generates force feedback at frequencies up to 800 Hz. Maximum force output is 6 N (2N continuous) and the force resolution is 4 mN. The forceps employ a contact-free magnetic position sensor as well as micro-machined accelerometers to measure opening/closing acceleration. Position resolution is 0.6 microm with 1.3 microm RMS noise. The forceps can simulate stiffness greater than 20N/mm or impedances smaller than 15 g with no noticeable haptic artifacts or friction.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">As telerobotic surgery evolves, haptics will play an increasingly important role.</AbstractText>
<CopyrightInformation>Copyright 2006 John Wiley & Sons, Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rizun</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>University of Calgary, Calgary, Alberta, Canada. prizun@ucalgary.ca</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gunn</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cox</LastName>
<ForeName>B</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sutherland</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Studies</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Int J Med Robot</MedlineTA>
<NlmUniqueID>101250764</NlmUniqueID>
<ISSNLinking>1478-5951</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017076">Computer-Aided Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004581">Electronics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004867">Equipment Design</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019544">Equipment Failure Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019563">Mechanics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015203">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012371">Robotics</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012680">Sensitivity and Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013314">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D025321">Surgery, Computer-Assisted</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D013525">Surgical Instruments</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017216">Telemedicine</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000295">instrumentation</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014110">Touch</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014159">Transducers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D014584">User-Computer Interface</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>5</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/rcs.110</ArticleId>
<ArticleId IdType="pubmed">17520653</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001629 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 001629 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:17520653
   |texte=   Mechatronic design of haptic forceps for robotic surgery.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:17520653" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a HapticV1 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024